Flexible Performant Tensor Contractions on GPUs

Thomas Faingnaert, Ward Vermeulen, Tim Besard, Bjorn De Sutter, Member, IEEE

Abstract—Tensor contractions extend the concept of the Gen-
eral Matrix Multiplication (GEMM) to high-dimensional spaces.
They enable sophisticated computations in various scientific
disciplines. Graphics Processing Units (GPUs) are commonly used
to accelerate tensor contraction algorithms due to their inherent
parallelisability. NVIDIA’s cuTENSOR stands as a state-of-the-
art library for GPU-based tensor contractions. However, its lack
of flexibility limits researchers in tailoring contraction kernels
to their specific research needs. This paper presents a novel
and flexible implementation of the GEMM-like Tensor Tensor
(GETT) multiplication algorithm for tensor contractions in Julia.
By repurposing and adapting components of GemmKernels.jl,
a versatile library offering customisable and high-performance
GEMM kernels for CUDA-enabled GPUs, we construct GEMM-
like Kkernels that cater to the unique requirements of tensor
contractions. Despite being entirely written in high-level Julia
code and not yet exploiting a range of modern CUDA hardware
features, the average performance of our library on standard
tensor contractions compares favourably to ctTENSOR’s hand-
optimised implementations, with outliers in both directions
(faster and slower). When flexibility is needed, e.g. to fuse arbi-
trary elementwise operations into kernels, our library performs
up to an order of magnitude faster than cuTENSOR, even on
recent, data centre-grade devices such as the RTX 6000 Ada.

Index Terms—tensor contraction, graphics processors, high-
level programming languages.

I. INTRODUCTION

Tensor contractions (TCs) have become a fundamental
computational primitive in scientific applications ranging from
deep neural network training to quantum circuit simulation and
computational chemistry. TCs generalise matrix multiplication
to higher-dimensional arrays.

Offering massive parallelism and memory bandwidth,
Graphics Processing Units (GPUs) are the dominant accel-
erator architecture for tensor-intensive workloads. However,
exploiting their full potential remains a complex task because
of several reasons, including the curse of dimensionality
inherent in high-order tensors and the tight coupling between
algorithmic choices and hardware constraints such as memory
hierarchy, thread scheduling, and data movement.

GPU tensor libraries such as cuBLAS [1], cuDNN [2], and
cuTENSOR [3] achieve high performance through aggressive
specialisation and hardware-specific optimisation. However,
this performance comes at the cost of flexibility: these hand-
tuned libraries typically support only a fixed set of operations
with specific constraints on tensor properties. For instance,
cuBLAS optimises for dense matrix operations with standard

T. Faingnaert and B. De Sutter are with the Department of Electronics and
Information Systems, Ghent University, Belgium.

W. Vermeulen works at TechWolf.

T. Besard works for JuliaHub.

Manuscript received MMM DD, YYYY; revised MMM DD, YYYY.

data types (FP16, FP32, FP64), while cuDNN focuses on a
fixed set of deep learning primitives with particular layout
requirements. Beyond data type and layout constraints, the
libraries offer limited support to fuse elementwise operations
into the TC kernels. While some libraries include TCs with
some standard, commonly used elementwise operations fused
into them, most are unable to fuse arbitrary elementwise op-
erations. When users need non-fused elementwise operations,
this leads to excessive memory traffic because intermediate
results must be materialised between kernel calls.

For performing operations outside the libraries’ boundaries,
researchers face a choice: accept orders of magnitude slower
performance using generic implementations, or invest substan-
tial effort in custom kernel development. The latter requires
those researchers to develop the necessary expertise in GPU
architectures and programming models, on top of their domain
knowledge, thus putting a drag on their scientific progress.

With our research, we aim to make the full power of
GPU acceleration available to programmers without sacrific-
ing flexibility, and without needing them to become GPU
experts. To do so, we leverage the capabilities of the scientific
programming language Julia. As has been done for other
computational primitives, such as general matrix multiplication
(GEMMs) [4], we build on Julia’s unique features to compile
high-level, abstract API usage into performant code. Most im-
portantly, our API design and the underlying implementation
allow arbitrary elementwise operations to be fused into the TC
kernels, thus avoiding the need to launch additional kernels
and incur the cost of their corresponding memory traffic.

The main result of our research is an extension to the Julia
package GemmKernels.jl that, despite being entirely written
in high-level Julia code and not yet exploiting a range of
modern CUDA hardware features, achieves TC performance
that is on average better than cuTENSOR’s hand-optimised
implementations on several generations of CUDA devices,
with outlier TCs in both directions (faster and slower). When
flexibility is needed, e.g. to perform elementwise operations
for which cuTENSOR does not include fused kernels, our
library performs up to an order of magnitude faster than
cuTENSOR, even on recent, data centre-grade devices such
as the RTX 6000 Ada. Our contributions with this paper are:

e The design of our TC extension to GemmKernels.jl,
including non-TC-specific adaptations that improve the
base GEMM performance of GemmKernels.jl.

o A performance evaluation of our kernels across dif-
ferent GPU architectures, ranging from consumer-grade
to data centre-grade hardware, including a performance
benchmark against NVIDIA’s caTENSOR library and the
impact of operator fusion on performance.

o An in-depth analysis of performance patterns across dif-
ferent GPU architectures and TCs, identifying architec-

© 2026 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

ture-specific optimisation opportunities and performance
bottlenecks to inform future development strategies.

o An analysis of the impact of the compiler on programmer
and end-user productivity when developing or using flex-
ible libraries in high-level programming languages, and
suggestions to alleviate potential issues.

The remainder of this paper is structured as follows. Sec-
tion II provides background on tensors, TCs, GPGPU pro-
gramming, Tensor Cores, Julia, and the GemmKernels package
on which our implementation builds. Section III presents our
requirements for a flexible TC API and details the components
necessary to implement it in Julia, including extensions to
GemmKernels, methods for parameter optimisation, and illus-
trative usage examples. Section IV evaluates and analyses the
performance of our approach. Section V examines the influ-
ence of compiler technology on programmer and library user
productivity in the context of flexible computational libraries.
Section VI surveys related work, while Section VII describes
our artefacts’ availability. Finally, Section VIII concludes with
a summary of our contributions and directions for future work.

II. BACKGROUND
A. Tensors

Tensors are multidimensional arrays, i.e. the generalisation
of one-dimensional vectors and two-dimensional matrices. The
dimensionality of a tensor A is its number of dimensions, and
will be written as d 4. Each element in a d_4-dimensional tensor
A is uniquely addressed by its index, which is represented as
a da-tuple (i1,42,...,44,). The set of all indices of a tensor
A is called its index set 4 = {i1,12,...,%q,}. Each i, is a
natural number from 1 to E;L“, inclusive, where E;f‘ is called
the extent of the nth dimension of .A.

Tensors can be stored in many different formats. In this
paper, we use Julia’s convention of a column-major format,
where the storage order in memory corresponds to the order
of indices. The stride of the mth dimension in tensor A,
denoted S;l“, is the number of memory locations in between
two elements that are contiguous in that dimension. Hence,
for a column major layout, Sy* = 1, and S;* = Hnm_:ll EA.

Tensor transpositions permute the order of indices in a
tensor, similar to matrix transpositions. They do not change
a tensor’s dimensionality, they only reorder its elements.

Reshaping operations like flattening and folding do change
the dimensionality. Flattening reduces it by re-interpreting two
or more dimensions of extents EAEA,, ... Ef, asasingle
dimension of extent H:jz EA. Folding does the inverse, and
increases the dimensionality by splitting a dimension into two
or more consecutive dimensions. Both flattening and folding
are purely logical operations, and do not change the in-
memory representation of the tensor.

Finally, tensor contraction (TC) is the multidimensional
analogon of matrix multiplication. The general form of a
binary TC of the tensors A, 53, and C is shown in Formula (1),
in which we introduce three index sets I,,,, I,,, and Ij,. The set
I,,, is the set of indices that is common to both A and C (but
not B), and is called the set of free indices of A. Analogously,
I, is the set of indices common to B and C (but not A), and

is referred to as the set of free indices of B. Finally, the set
I}, is the set of indices that occur in both A and B, but not
C. It is the set of indices that is summed over, and is hence
also called the set of contracted indices. HA, 15, and TIC are
permutations that determine the order of indices for .4, B, and
C, respectively.

By, By,
CHC(ImuI,L) — E E - AHA(I,,LUI;C) 'BHB(IkuI,L)
ki=1 kx=1

+ B - Cre(r,,ur,,)
(1)

In the remainder, we will make two assumptions regarding
the index sets I,,, I,,, and I, in line with the literature [5],
[6]. First, we assume that these sets form a partition of the
union of the index sets of the input tensors, [4 U Ig U I¢.
Hence, we do not consider the case where one index occurs
in all of A, B, and C, as is the case for batched TCs [7].

Secondly, we assume that all three index sets are non-empty.
This means that the TC can be mapped to a matrix multipli-
cation (GEMM), as opposed to a lower-level BLAS primitive
like a matrix-vector (GEMV) or vector-vector product (DOT or
GER). The latter type of TCs exhibit a lower ratio of floating
point operations to memory accesses, and thus offer fewer
opportunities for amortisation of memory accesses [8]. For
these TCs, re-using the lower-level BLAS kernels typically
suffices, as they do not require GEMM-like optimisations like
tiling or vectorisation to achieve peak performance [5], [8].

A concrete example of a TC is displayed in Formula (2).
In this example, o« = 8 =1, I,,, = {m1,ma}, I,, = {n1,n2},
Iy = {ki, ko }, TIA = (my, k1, moa, k), IIP = (na, ko, n1, k1),
and TI€ = (mq,ny, ne, ma).

Ek1 E,c2

Cm1n1n,2m2 — § § Anle]mgkg : Bn2k2n1k1 +Cm,1n1n2m2
ki1=1ko=1
(2)

To express TCs succinctly, we use the Einstein summation
convention in the remainder of the paper. In this notation,
the sums across the set of contracted indices I}, are dropped,
and are assumed to be implicit. Formula (2) thus becomes
Formula (3) in the Einstein summation convention.

Cm1n1n2m2 % Amlkl’HLQkQ : Bn2k2n1k1 + Cm1n1n2m2 (3)

Matrix multiplication is a special-case TC. Indeed, by
substituting I,,, = {m}, I,, = {n}, I = {k}, TT* = (m, k),
8 = (k,n), and TI° = (m,n) in Formula (1), one obtains
the matrix multiplication C,,,,, + - Ay - Bkn + 8- Cpp in
Einstein notation. Other versions of general matrix multipli-
cation that occur in BLAS-libraries, where either one or both
of the input matrices A and B are transposed, are obtained by
changing the permutations II** and II5.

B. Tensor Contraction Algorithms

Approaches for performant TCs have been classified in three
categories: loop nesting, loop-over-GEMM, and TTGT [5].

Loop nesting converts TCs into loop nests [9], [10], [11] on
which optimisations are applied like loop reordering, fusion,

and vectorisation. While effective for small, cache-fitting TCs,
it suffers from poor memory access patterns for larger ones.

Loop-over-GEMM slices tensors into 2D matrices and
performs an efficient GEMM kernel on every identified 2D
slice [8], [12]. Performance degrades when slices are small or
memory accesses are highly strided.

TTGT (Transpose-Transpose-GEMM-Transpose), used by
frameworks like Cyclops [13], Tensor Toolbox [14], Tensor-
lab [15], and libtensor [16], calls GEMM only once in between
three transpositions that reorder tensor dimensions. Tensors
are first transposed so contracted indices align, flattened into
matrices, multiplied via GEMM, of which the result is then
folded and transposed back into the resultant tensor. While
effective for compute-bound TCs, TTGT requires extra kernel
launches and additional memory [5], and may produce highly
rectangular matrices that underperform in GEMM libraries [6].

In 2018, GETT (GEMM-like Tensor-Tensor Contraction)
emerged as a fourth method that avoids explicit transposes
by reorganising dimensions during loading—essentially fusing
transposes into the GEMM kernel itself [5]. It has since been
adopted by others [6], [17]. GETT requires flexible GEMM
implementations but eliminates TTGT’s overhead.

C. GPGPU Programming

This paper focuses on NVIDIA’'s CUDA platform for
GPUs [18]. Other GPGPU frameworks have similar concepts,
albeit with sometimes different terms.

CUDA employs massive parallelism where a kernel function
executes across thousands of parallel threads, executed on the
following execution hierarchy:

e Threads: Smallest execution unit.

o Warps: Hardware groups of 32 threads executing the same
instruction simultaneously (SIMT model).

o Thread blocks: Programmer-defined groups executed on
the same Streaming Multiprocessor (SM) with efficient
communication/synchronisation.

e Grid: All blocks running the same kernel.

Data is stored in a memory hierarchy with matching levels:

o Registers: Per-thread, fastest but smallest.

o Shared memory: Per-block, divided into banks for parallel
access; bank conflicts cause serialisation.

e Global memory: Device-wide access, highest capacity but
highest latency.

e Caches: L1 (per-SM) and L2 (device-wide) buffer global
memory access.

Achieving maximum performance requires 16-byte mem-
ory transactions per thread. Smaller data types achieve this
through vectorisation—Iloading multiple contiguous elements
per instruction (e.g., 8 16-bit floats at once).

D. Tensor Cores

Modern NVIDIA GPUs include Tensor Cores—hardware
accelerators for matrix multiplication that operate in mixed
precision (lower-precision inputs, higher-precision accumu-
lation/output). They can be programmed with the WMMA
API that provides portable, warp-wide operations where 32

threads cooperatively compute matrix products. Alternatively,
cuBLAS, cuBLASLt, cuDNN, cuTENSOR, CUTLASS and
other vendor-provided libraries provide pre-optimised kernels.

Since 2017 each GPU generation adds new data types,
matrix shapes, and optimisation opportunities, that are then
used in the vendor-provided libraries.

As WMMA did not allow reaching optimal performance,
NVIDIA added mma . sync, a lower-level instruction executed
per 8 threads with smaller matrices, enabling finer control and
optimisations like 16-byte memory accesses and bank conflict
elimination through custom swizzled memory layouts [19].
Later GPUs accumulated more mma . sync variants with dif-
ferent data types, shapes, and thread-to-element mappings.

In 2018, Turing’s second-generation Tensor Cores intro-
duced a new instruction, 1dmatrix, which loads matrix
elements from shared memory cooperatively by all threads
in a warp [20]. To improve performance, each thread loads 16
bytes, which are then broadcast to four other threads to match
the data distribution of the mma . sync instruction.

The Ampere architecture (2020) introduced asynchronous
global-to-shared memory copies without intermediate reg-
isters, reducing data movement and register pressure [20].
This enables deep software pipelines to hide memory latency,
complementing Ampere’s increased shared memory capacity.

Major changes of the Hopper architecture (2022) included
Tensor Cores operating across 4-warp groups and reading
directly from shared memory [21]; a new execution hierarchy
level called thread block clusters that enables concurrent SM
scheduling and distributed shared memory for SM-to-SM
communication; Tensor Memory Accelerator (TMA) hardware
units for offloading address arithmetic and data movement
from SIMT cores, supporting multicast, swizzled layouts, and
automatic zero-padding; and asynchronous Tensor Core inputs
that enable warp specialisation, where producer warps load
data via TMA, and consumer warps perform computation.

Ada Lovelace, the consumer variant of the data centre-
focused Hopper architecture, was launched a month after the
latter. It does not support Hopper architectural features such as
asynchronicity, thread block clusters, or TMA, but does allow
for optimisations specific to Ampere or earlier [22].

In 2024, Blackwell introduced a new word-addressed Ten-
sor Memory requiring explicit allocation [23]. Tensor Core
operations also expanded to two-thread-block-wide with asyn-
chronous inputs/outputs. In addition, decoupled epilogue op-
erations enable three-way warp specialisation (loading, com-
puting, post-processing), and enhanced scheduling options
including preferred clusters and persistent scheduling.

E. Julia Programming Language

Julia (2012) is a high-level programming language with
modern features (interactivity, package manager, dynamic
parametric types) that achieves C-like performance through
compilation rather than interpretation [24].

Julia features multiple dispatch: Upon a run-time function
invocation, one function out of a set of overloaded functions
is selected based on the dynamic types of all of the run-time
arguments. This contrasts with, e.g., C++’s single-dispatch

virtual functions that are selected solely on the type of the
implicit this pointer argument.

Julia combines ahead-of-time performance with just-in-time
flexibility by performing type inference for all expressions to
reduce the run-time uncertainty commonly associated with dy-
namic typing systems, and by compiling specialising functions
per argument types (devirtualising calls and removing type
checks) for which efficient machine code is then generated.

Its compilation pipeline first parses source code to an
Abstract Syntax Tree (AST); lowers that to untyped Julia IR;
performs type inference to convert that to typed Julia IR from
which LLVM IR is then generated, after which LLVM [25] is
leveraged for code optimisation and machine code generation.

Julia can also be used to program accelerators. Through the
CUDA jl package, one can write CUDA kernels completely
in Julia [26]. It reuses Julia’s compilation pipeline up until
the code generation to LLVM IR. That IR is intercepted and
passed to LLVM’s NVPTX backend, which generates PTX
instructions, a portable virtual instruction set architecture used
by NVIDIA GPUs. Before execution, this PTX is then con-
verted by the black-box ptxas compiler to SASS instructions,
the actual underlying instruction set of the GPU.

This leverages existing LLVM infrastructure while main-
taining Julia’s high-level expressiveness.

F. GemmKernels

GemmKernels is a native Julia library for flexible and
performant GEMM kernels by Faingnaert et al. [4]. It is
focused on NVIDIA GPUs, and supports Tensor Cores to
accelerate computations. It exploits the data reuse inherent in
GEMM by using recursive blocking techniques, which copy
tiles of the input matrices to progressively faster levels of the
memory hierarchy. First, a tile of the input matrices A and
B is copied cooperatively from global to shared memory by
all threads in a thread block. Then, this tile is subdivided in
smaller tiles, which are each loaded cooperatively into registers
by all threads in the same warp. Each warp then computes a
matrix product, e.g. using WMMA, and stores the result back
to shared memory. Finally, the result is copied back to global
memory by all threads in a thread block.

As with TCs, so too is there a need for flexibility in GEMM
kernels, e.g. to support different data types, memory layouts,
elementwise operations, etc. GemmKernels achieves this flex-
ibility by providing a set of template kernels. These template
kernels consist of orthogonal components that together form
a full GEMM kernel. Each of the 5 components has its own
responsibility, and allows for a different kind of flexibility.
Params determine the sizes of the tiles for each step in the
GEMM, and the GPU kernel’s launch configuration such as
the amount of thread blocks and warps. Layouts can be used
to customise the memory layout and data type of the input or
output matrices in both global and shared memory. Transforms
are functors that are used to apply elementwise operations to
the input and output matrices, such as scaling or activation
functions. The Operator component is used to customise the
computation performed by each warp, and can be utilised
for custom data types or arithmetic (such as complex or

tropical numbers). Finally, the Epilogue component allows for
customisation of post-processing, such as the addition of a
bias-vector addition after the GEMM.

With Julia’s multiple dispatch paradigm, it is possible to
define fine-grained methods that modify the functionality of
each component, allowing users to tailor the library to their
specific needs. For example, to customise the memory layout
of the input and output matrices, one can define a custom
layout data type CustomLayout, and then define custom
implementations of the load and store! functions. This
new layout component can then be combined seamlessly
with existing components in GemmKernels to form a new,
specialised GEMM kernel. Julia’s just-ahead-of-time compi-
lation and specialisation allows to perform this composition
completely at compile time, without any run time overhead.

III. FLEXIBLE TENSOR CONTRACTIONS

A. Requirements

NVIDIA’s popular ctTENSOR library [3] features highly
optimised kernels based on both TTGT and GETT. While
cuTENSOR has support for different data types and elemen-
twise operations, its closed-source nature limits its flexibility.
This is problematic when a use case does not map exactly
to one of its kernels. For example, elementwise operations
such as activation functions are ideally fused in the TC
kernel, but catTENSOR only supports a limited set of ele-
mentwise operations on tensor inputs and outputs [27]. To use
commonly-used, but unsupported activation functions such as
the Exponential Linear Unit (ELU) [28] and Leaky Rectified
Linear Unit (Leaky ReLU) [29], or to experiment with novel
activation functions, one needs extra kernels. This increases
memory traffic (to load input tensors multiple times), and
requires extra memory to store intermediate tensors. Custom
binary operations in the TC (i.e. providing custom definitions
of addition and multiplication), which can be useful for
e.g. tropical arithmetic, are not supported by cuTENSOR
either [27]. Researchers needing such kernels have no choice
but to implement them from scratch. Finally, cuTENSOR only
supports a limited number of data types.

To alleviate these issues, we propose a flexible TC library
using the GETT technique, based on the flexible and per-
formant GEMMs in the GemmKernels library. It supports
arbitrary binary and elementwise operations for the input and
output matrices. The TC’s general formulation of Formula (1)
is thus adapted to Formula (4) in Einstein summation. Here,
P 4pc and P 45 represent custom binary operations in terms
of an arbitrary addition and multiplication, respectively. ¥+
represents the elementwise operation applied to tensor 7.

We put forward the following requirements:

e Flexibility: Our library has to support custom elemen-
twise operations, data types, and binary operators, for
which we can rely on the flexibility of GemmKernels’
Operators and Transforms.

e Data-layout agnostic: We can make no assumptions on
the data layout of the input or output tensors, in order to
improve interoperability with other tensor libraries.

Crie(r,,ut,) < Pasc (‘DAB (Ya(Anacr,uny)» Y8(Busr,ur,)) WC(CHC(I,”UI”))) “4)

o Maximise GemmKernels reuse: We should reuse as much
pre-existing infrastructure from GemmKernels as possi-
ble. This ensures that optimisations of the base matrix
multiplication kernels in GemmKernels can be ported to
our TC with minimal changes.

e Similarity to cuTENSOR: In the design of our user-facing
interface, we should strive for similarity to cuTENSOR
where applicable. This increases familiarity and reduces
adaptation effort for users that have used cuTENSOR.

B. Components for Flexible Tensor Contractions in Julia

In order to generate the necessary components to specialise
the GemmKernels kernels, our library needs the so-called
modes for each input and output tensor. These modes are an
ordered set of tensor indices, in the order that they appear in
the TC. Based on these modes, our library first determines the
optimal parameters for GETT, and the optimal configuration
of the GEMM kernel. The process by which the optimal set of
parameters is determined will be discussed in Section III-D.
Next, our TC library dynamically generates custom layout
components, and a GETT plan containing all information
needed to specialise the GEMM kernel and compute the TC.

These layout components will be used as global memory
layout of the input and output matrices of the GEMM kernel.
They specialise the copying of tiles from global to shared
memory by implementing a custom mapping between the
GEMM kernel’s 2D matrix coordinates and the corresponding
tensor coordinates, in line with the GETT technique. Since
GemmKernels has kernels for transposed and non-transposed
inputs, we have to decide for each tensor whether the corre-
sponding matrix is non-transposed or transposed, i.e. if our
new custom layout component should be derived from the
existing column-major or row-major layouts in GemmKernels.
Furthermore, we need to choose the optimal access order for
the indices in each of the sets I,,, I,, and I;. Given these
parameters, our library dynamically creates a new custom
layout type that extends either of the two GemmKernels
layouts. Most layout-specific methods (e.g. those defining the
iteration order of loops) can be reused without changes, so
our GETT-kernel behaves similarly to a normal GEMM. Our
implementation only needs to override the 1oad and store!
methods that transfer 2D subtiles of the input and output
tensors to/from memory. The position to load from or store
to is given as a parameter, and is specified in the (M, N, K)-
coordinates of the GEMM. The 1oad and store! functions
convert these logical coordinates to physical memory offsets.

Consider the example TC Cupcae < Aecvfa - Bra, with
GETT-plan Cl(abce)(d) = A/(ecba)(f) . Bl(f)(d), and all tensors
stored in a column-major layout. The memory offset for A in
the GETT-kernel can be obtained based on the offsets off;4
and strides S;“ for each dimension ¢, using Formula (5).

offASA + off 1S4 + offy Syt + oft S + off£S7 (5)

The offsets for each dimension for the matrix element
(M, N, K) are given by Formula (6).

01‘[’;4 =M mod Ef
M
offg4 = EAJ mod EA
M
M
offA = J mod E4
¢ LBAEAES ‘
offf = K mod Ef

In general, the memory offset for a tensor is a sum of
terms of the form (| SEMM index | 04 modulus) - stride.
The set of divisors, moduli, and strides for each dimension are
collected in three separate lists, and passed as type parameters
to a generic GETT-layout. Listing 1 shows the implementation
of this layout and the custom implementation of its 1oad func-
tion. The implementation of the store! function is analogous
to the load function. Lines 1-2 and lines 3—4 each define
a parameterised GETT-layout type based respectively on the
GemmKernels column-major UnsafeAlignedColMajor
type and its row-major UnsafeAlignedRowMajor type.
The type parameters divT1, modT1, stridesl, divT2,
modT2, and strides?2 represent the set of divisors, mod-
uli, and strides for the first and second matrix dimension
of the layout (e.g. respectively M and K in our previ-
ous example). Lines 6-33 provide the implementation of
the custom load function, which takes as arguments the
workspace to load from, and a tile representing the
matrix coordinates to load from. Note that the 1ocad (and
store!) implementation is identical for row- and column-
major layouts (lines 7-10). Lines 14—15 compute the matrix-
index in the first and second dimensions. The loops in lines
17-25 then compute the memory offset to load from, in a
similar way to Formulae (5) and (6). GemmKernels’ load
and store! functions operate on tiles, which may contain
more than one element. The calculated of fset represents
the memory offset of the first element to load only. The
remaining lines 27-32 deal with loading the remaining el-
ements of the tile. It relies on two pre-computed type pa-
rameters of the GETT-layout: strideOverExtent, which
determines the stride between contiguous elements in the tile,
and isLoadOrStoreStrided, a boolean that represents
whether elements are stored contiguously in memory. Line 27
computes the total number of elements that need to be loaded.
Line 28 checks whether the memory accesses have stride-1.
If so, our implementation uses vectorised stores, for which it
reuses GemmKernels’ built-in v1oada function on line 29. In
the other case, our layout component dispatches automatically
to a strided load implementation sloada on line 31, passing
the stride between adjacent elements st rideOverExtent.
Note that due to Julia’s compilation flow with type inference

abstract type GETTLayoutColMajor{T, divTl, modTl, stridesl, divT2, modT2, strides2,
isLoadOrStoreStrided, strideOverExtent} <: Layout.UnsafeAlignedColMajor{T} end
abstract type GETTLayoutRowMajor{T, divTl, modTl, stridesl, divT2, modT2, strides2,

isLoadOrStoreStrided,

strideOverExtent} <:

Layout .UnsafeAlignedRowMajor{T} end

Base.(@propagate_inbounds @inline function Layout.load(

::Union{ Type{GETTLayoutColMajor{T, divTl,

}, workspace, tile::Tile{size}

modT1,
isLoadOrStoreStrided,
Type {GETTLayoutRowMajor{T, divTl, modTl,
isLoadOrStoreStrided,

stridesl, divT2, modT2, strides2,
strideOverExtent}},
stridesl, divT2, modT2,

strideOverExtent}}

strides2,

) where {T,divTl,modT1l, stridesl,divT2,modT2, strides2, isLoadOrStoreStrided, strideOverExtent, size}

Gl = tile.base[l] + tile.offset[1]
G2 = tile.base[2] + tile.offset[2]
offset = 1

@loopinfo unroll for i in eachindex (divT1l)
stride_offset = (Gl + divT1[i]) % modT1[i]
offset += stride_offset % stridesl([i]

end

@loopinfo unroll for i in eachindex (divT2)
stride_offset = (G2 + divT2[i]) % modT2[i]
offset += stride_offset % strides2[i]

end
NUMEL = size[l] * sizel[2]
if (isLoadOrStoreStrided == false)
return Layout.vloada (Layout.Vec{NUMEL, T}, pointer (workspace), offset)
else
return GETTLayout.sloada (Layout.Vec{NUMEL, T}, workspace, offset, strideOverExtent)
end
end

Listing 1: Custom GETT-layout type definition based on GemmKernels’ built-in layouts, and its overridden 1oad function.

and specialisation, the type parameters are compile-time con-
stants. This eliminates much of the run time overhead of the
offset computations in lines 17-25, and the check on line 28.

This process is repeated for the A-, B-, C-, and D-tensors.
A GemmKernels kernel is then launched using those layout
components in global memory. The size of the GEMM is set
to M = [Lie; Eis N = [l By and K = [[;c;, B
Optionally, the user can also provide custom operators and
elementwise operations to apply to the GEMM, which are
passed along to GemmKernels before launching the kernel.

One important limitation in our implementation is that we
assume that the entire tensor can be covered by an integer
number of thread block tiles. For the M -dimension, this comes
down to the requirement that M = [[;c; E; is divisible
by the thread block tile size in the M-dimension. If this
requirement is not met, the user needs to pad the tensors with
zeros before the GEMM kernel is launched.

C. Optimisations to GemmKernels

To improve performance, we have also made three changes
to the template kernels in GemmKernels. These changes are
not specific to TCs; they benefit GEMMs as well.

The first change relates to the iteration order of memory
copy operations in GemmKernels. These depend on the row-
or column-major nature of the used layouts. In the original
kernels, only the copies for the A- and B-matrices supported
both row- and column-major orders: changing the memory
layout had no influence for the C- and D-matrices. Because
BLAS only supports transposing A and B, there was no need
for alternative layouts for C' or D. In order to fix this, we
adapted the prologue and epilogue of the kernels to take into
account the layout in the iteration order, and introduced a new
kernel configuration parameter, is_cd_colmajor.

The second optimisation is borrowed from CUTLASS [30],
and is referred to as CTA or thread block swizzling. It applies
a swizzling function to the mapping between thread block IDs
and tiles of the resultant D matrix. The goal is to maximise
the probability that thread blocks that access the same tile of
A or B are scheduled on neighbouring SMs at the same time,
increasing L2 hit rate. We have noticed that this can have
a massive impact on performance. On one TC, we noticed
an increased L2 hit rate from 38% to 95%, reducing the
total number of bytes requested from DRAM by 91%. This
ultimately resulted in a performance improvement of 4.74x.

This optimisation is implemented through a new component,
CTASwizzle, with two associated methods that determine
the needed number of thread blocks and the mapping between
thread block ID and the rows and columns of the output matrix
that should be computed by the thread block with that ID.
We support three swizzling functions. The first, identity,
is equivalent to GemmKernels’ old behaviour. The second
is HorizontallyTiled, and has a configurable tile size
N. It assigns the first N tiles in the first row to thread
blocks with ID 1,2,..., N, the first N tiles in the second
row to N + 1,...,2N, and so on. The pattern is then
continued for every block of N columns. The third swizzling
function, VerticallyTiled, works symmetrically to the
horizontally tiled swizzling function.

The final optimisation is an additional kernel template
utilising software pipelining, as an alternative to the already
existing pipelined kernel in GemmKernels. Our alternative
reorders memory instructions and computations compared to
GemmKernels’ pipelined kernel. As a result, we can reduce the
number of synchronisation instructions by a factor 3, reducing
the number of stalls. This necessitates allocating two tiles of
A and B in shared memory, however, so the tile size in the
K-dimension must be halved, reducing data reuse.

D. Determining the Optimal GETT-Parameters

As mentioned in Section III-B, our GETT implementation
determines the optimal parameters for launching the GEMM
kernel during plan generation. This includes parameters for
which the possible values are independent of the TC, and
those that are TC-specific. The former category includes tile
sizes of the underlying GEMM, launch configuration (e.g. the
total number of warps per thread block and how to assign
subtiles to warps), the operator size to use (e.g. the WMMA
shape), the kernel to use (non-pipelined vs. GemmKernels’
original pipelined vs. our new pipelined version), and which
thread block swizzling function to use (horizontal vs. vertical,
and which tile size). It also includes some parameters for
each of the custom layouts we generate for the A-, B-, and
D-tensors, i.e. whether to base them on existing row-major
or column-major layouts. For this category, we consider all
possible values that in our experience perform well on one or
multiple TCs, totalling half a million possible configurations.

The latter category contains the remaining parameters for
the custom layouts, namely the permutations of the index sets
I,,, I,,, and I, that determine in which order the indices in
them are accessed. The number of possible values for this
category depends on the number of permutations of the index
sets I,,, I,, and I, and thus varies for different TCs. For
a GEMM, |I,,| = |I,| = |Ix] = 1, so no choices need to
be made. For TCs of higher dimensionality, as found, e.g., in
quantum chemistry calculations [9], typical values are |I,,,
|I.| = 3, |Ix| = 1, yielding 3! - 3!- 1! = 36 possibilities.

The total design space size can thus vary from slightly
over half a million candidate kernels for GEMM to almost
20 million candidates for quantum-chemistry-related TCs.
Given the large design space, the optimal GETT parameters
should ideally be determined automatically for the user. We
experimented with choosing the optimal parameters based on
heuristics that try to maximise stride-1 memory accesses and
vectorisation opportunities. Note that each index in the sets [,,,
I,,, and Iy, occurs in two matrices, which may have conflicting
optimal orders. Finding a good compromise turned out to be
hard with heuristics, leaving a lot of performance on the table.

We explored hyperparameter optimisation using the sam-
pling strategies supported by the Julia package Hyper-
opt.jl [31]: uniformly random search, Latin hypercube sam-
pling [32], bandit-based Hyperband [33], and BOHB [34].
None of them yielded significantly improved results over a
simple brute-force random search. In correspondence with
the package maintainer, we learnt that most optimisers in
Hyperopt.jl do not take into account previous samples to guide
the selection of future points. The sole exception is BOHB, but
this technique is less suited for integer-valued hyperparameters
such as the tile sizes.

The approach we settled for in the end, is tuning the
parameters using random sampling of the design space. For
each TC, we select a random subset of candidate kernels that
we compile and profile. The parameters of the configuration
that performs the fastest are then selected and stored in the
GETT plan for later reuse. In this tuning process, the accuracy
of the performance measurements of the candidate kernels

0 N U R W —

©

11
12
13
14

tensorModes = [[1, 2, 3, 4, 5], # C_abcde
(5, 3, 2, 6, 11, # A_ecbfa
[6, 411 # B_fd

extents = (16, 16, 16, 64, 16, 64)

dataType = Floatlé
computeType = Floatlé
accumulateType = Float32

elOpB = x -> if x>0 x else exp(x)-1 end # ELU
a, B =1, 0

A = CUDA.randn(dataType, extents|[tensorModes[2]])
B = CUDA.randn(dataType, extents[tensorModes[3]])
C = CUDA.zeros (dataType, extents|[tensorModes[1]])

Listing 2: Set-up code common to GemmKernels and cuTEN-
SOR, for the TC Cgpede < Aecbfa : de.

is of paramount importance. We improve it by averaging
the execution time over 5 runs, and locking the GPU and
memory clock speeds. We also monitor the GPU state and
sleep momentarily when throttling is detected.

E. Example usage

To illustrate how end users can use our flexible TCs,
consider again the TC Cypcde < Aechfa - Bya. Listing 2 shows
the necessary Julia set-up code, which can also be used to
compute the TC using cuTENSOR. The TC to perform is
defined in terms of the modes for each of the tensors C, A,
and B (lines 1-3) and the extents for each dimension (line
4). Lines 5-7 set the data types to store the tensors in global
memory, the type that the inputs .4 and B are cast to during
computations, and the type of the accumulator. A custom ELU
elementwise operation is defined in line 9, and line 10 sets «
and S in order to perform an in-place TC without scaling.
Finally, lines 12-14 create the input and output tensors as
GPU-backed arrays of the correct extent in global memory.

After this set-up, Listing 3 can be used to launch a GemmK-
ernels.jl kernel to perform the TC. First, lines 1-17 create a
TC plan, which contains the parameters of the GETT TC. This
plan need only be created once for each TC, and can be reused
to launch multiple kernels for the same TC. In order to provide
the necessary flexibility outlined in Section III-A, the user can
pass custom operators (line 11) and elementwise operations
(line 4) to the underlying GEMM kernel. Optionally, launch
parameters of the GEMM that influence performance such as
the chosen kernel and tile sizes can also be customised (see
lines 13-16). Secondly, line 19 then performs the TC using
this created plan by launching a correctly configured GEMM
kernel from GemmKernels.

Listing 4 shows the cuTENSOR version of Listing 3. Note
that our interface mimics the design of cuTENSOR, which im-
proves familiarity for users coming from cuTENSOR. cuTEN-
SOR’s interface also consists of two steps: creating the plan
in lines 4-11, and executing the TC in lines 13-22. There are
three important differences between our interface and cuTEN-
SOR’s, however. For one, the elementwise operation that we
have chosen, ELU, is not (yet) supported by ctTENSOR, and
can hence not be fused. Line 2 in Listing 4 therefore launches
a separate kernel to perform this elementwise operation. The
second difference is that cuTENSOR’s customisation is much
more limited compared to our interface. While we can choose

plan = Tensors.ContractionPlan (

a!

A, TensorDescriptor (A), tensorModes[2],

B, TensorDescriptor (B; unaryOp=elOpB),
tensorModes[3],

’
C, TensorDescriptor(C), tensorModes[1l],
C, TensorDescriptor(C), tensorModes[1l];
computeType = computeType,
accumulateType = accumnulateType,
operator = Operator.WMMAOp{8, 32, 16,

computeType, accumulateType},

blockShape = (M = 256, N = 64, K = 64),
warpsPerBlock = 4,

computeWarp = (M = 64, N = 64, K = 16),
kernel = Kernel.matmul_pipelined

)

Tensors.contraction! (plan, «, A, B, B, C, C)
Listing 3: The TC Capede < Aecbfa - Bra With our library.

Apply elop not supported by cuTENSOR separately

B = elOpB. (B)

plan = cuTENSOR.plan_contraction (
A, tensorModes[2], cuTENSOR.CUTENSOR_OP_IDENTITY,
B, tensorModes[3], cuTENSOR.CUTENSOR_OP_IDENTITY,
C, tensorModes[1l], cuTENSOR.CUTENSOR_OP_IDENTITY,

cuTENSOR.CUTENSOR_OP_IDENTITY;

compute_type = computeType,

algo = cuTENSOR.CUTENSOR_ALGO_GETT
)

cuTENSOR.contract! (

ay
A, tensorModes[2], cuTENSOR.CUTENSOR_OP_IDENTITY,
B, tensorModes[3], cuTENSOR.CUTENSOR_OP_IDENTITY,

r
C, tensorModes[1l], cuTENSOR.CUTENSOR_OP_IDENTITY,
cuTENSOR.CUTENSOR_OP_IDENTITY,
compute_type = computeType,
plan = plan
)

Listing 4: The TC Capede < Aecbfa - Bra With ctTENSOR.

the compute type and algorithm that are used for the TC, we
cannot customise kernel parameters such as tile sizes. The
final difference is that our plan generation additionally requires
specifying « and (. This allows our library to specialise the
kernel depending on their values, e.g. eliminating the loading
of the C-tensor if 3 is 0.

IV. EVALUATION
A. Measurements

For our evaluation, we reuse the TCCG benchmark suite ini-
tially proposed by Springer and Bientinesi for their performant
TC generator [5], which has since been used in follow-up work
as well [6], [35], [36], [37]. The benchmark suite consists of 48
TCs, collected from real use cases in the scientific literature.
Most of the TCs are from the field of computational chemistry:
18 highly-dimensional TCs from the CCSD(T) method [9], 19
from coupled-cluster methods [38], and 3 arising in change-
of-basis formulae for integrals occurring in quantum chemistry
calculations [39]. The remaining 8 TCs are tensor-matrix
multiplications, also extracted from the literature [12]. Table I
lists all 48 TCs, their extents, and equivalent GEMM size.

We use consumer and data centre-grade GPUs of multiple
generations: two Volta GPUs (V100 and V100S), one Turing
GPU (RTX 2080 Ti), and three GPUs of the Ada Lovelace-
generation (RTX 4070, RTX 4080, and RTX 6000 Ada).
For each TC, we choose data types supported by all GPU

Table 1
TCCG BENCHMARK TCs
Tensor Contraction Extents M N K
1 abc-bda-dc 312 312 24 312 97344 24 312
2 abc-dca-bd 312 24 296 312 92352 24 312
3 abcd-dbea-ec 72 7224 7272 373248 24 72
4 abcd-deca-be 7224 727272 373248 24 72
5 abcd-ebad-ce 72 7224 7272 373248 24 72
6 abcde-efbad-cf 48 32 24 32 48 32 |2359296 24 32
7 abcde-ecbfa-fd 48 32 32 24 48 48 2359296 24 48
8 abcde-efcad-bf 48 24 32 32 48 32 |2359296 24 32
9 abcd-ea-ebed 7272727272 72 373248 72
10 abcd-eb-aecd 727272 72 72 72 373248 72
11 abcd-ec-abed 7272727272 72 373248 72
12 ab-ac-cb 5136 5120 5136 5136 5120 5136
13 ab-acd-dbc 312 296 296 312 312 296 92352
14 ab-cad-dcb 312 296 312 312 312 296 97344
15 abc-acd-db 312 296 296 312 92352 296 312
16 abc-ad-bdc 312 312 296 296 312 92352 296
17 abc-adc-bd 312 312 296 296 92352 312 296
18 abc-adc-db 312 296 296 312 92352 296 312
19 abc-adec-ebd 72727272 72 5184 72 5184
20 abcd-aebf-dfce 7272727272 72 5184 5184 5184
21 abcd-aebf-fdec 727272727272 | 5184 5184 5184
22 abcd-aecf-bfde 7272727272 72 5184 5184 5184
23 abcd-aecf-fbed 727272727272 | 5184 5184 5184
24 abcd-aedf-bfce 727272727272 5184 5184 5184
25 abcd-aedf-fbec 727272727272 | 5184 5184 5184
26 abcd-aefb-fdce 727272727272 5184 5184 5184
27 abcd-aefc-fbed 727272727272 | 5184 5184 5184
28 abcd-eafb-fdec 727272727272 5184 5184 5184
29 abcd-eafc-bfde 727272727272 | 5184 5184 5184
30 abcd-eafd-fbec 7272727272 72 5184 5184 5184
31 abcdef-dega-gfbc 24 16 16 24 16 16 24| 9216 4096 24
32 abcdef-degb-gfac 24 16 16 24 16 16 24| 6144 6144 24
33 abcdef-degc-gfab 24 16 16 24 16 16 24| 6144 6144 24
34 abcdef-dfga-gebc 24 16 16 24 16 16 24| 9216 4096 24
35 abcdef-dfgb-geac 24 16 16 24 16 16 24| 6144 6144 24
36 abcdef-dfgc-geab 24 16 16 24 16 16 24| 6144 6144 24
37 abcdef-efga-gdbc 24 16 16 16 24 16 24| 9216 4096 24
38 abcdef-efgb-gdac 24 16 16 16 24 16 24| 6144 6144 24
39 abcdef-efgc-gdab 24 16 16 16 24 16 24| 6144 6144 24
40 abcdef-gdab-efgc 24 16 16 16 24 16 24| 6144 6144 24
41 abcdef-gdac-efgb 24 16 16 16 24 16 24| 6144 6144 24
42 abcdef-gdbc-efga 24 16 16 16 24 16 24| 4096 9216 24
43 abcdef-geab-dfgc 24 16 16 24 16 16 24| 6144 6144 24
44 abcdef-geac-dfgb 24 16 16 24 16 16 24| 6144 6144 24
45 abcdef-gebc-dfga 24 16 16 24 16 16 24| 4096 9216 24
46 abcdef-gfab-degc 24 16 16 24 16 16 24| 6144 6144 24
47 abcdef-gfac-degb 24 16 16 24 16 16 24| 6144 6144 24
48 abcdef-gtbc-dega 24 16 16 24 16 16 24| 4096 9216 24

generations: A- and B- tensors are 16-bit floating point, C-
and D-tensors are 32-bit floating point. While Tensor Cores
of generations after Volta support additional data types, we
limit our performance evaluation to 16-bit floating point inputs
with 32-bit floating point accumulation'. This is in line with
recent literature, which even on the recent A100 GPU of the

'We additionally verified our kernels’ correctness using FPU operations (not
Tensor Cores) across multiple data types: 32- and 64-bit floating point, and
16-, 32-, and 64-bit integers. Nevertheless, we restrict the scope of our detailed
performance analysis to FP16 using Tensor Cores. The CUDA.jl package on
which we depend currently lacks WMMA support for newer data types (TF32,
bfloat16, FP64), preventing evaluation on those types. However, since both
GemmKernels.jl and our extension are parameterised on WMMA shape and
type, adding future support for these data types should require minimal effort.

Ampere generation, still uses 16-bit inputs [40], [41], even
for algorithms in scientific disciplines such as computational
chemistry where precision is traditionally important [42], [43].
Performance for these other data types may vary, as changing
the data types changes the memory access pattern, which
can have a significant impact on performance. A detailed
performance analysis for these other data types is future work.

We generated kernels with Julia 1.11.4, LLVM 16.0.6, and
CUDA.jl 5.9.2, and used CUDA Toolkit 13.0.0, and the open
NVIDIA kernel module v.580.95.05. Table II lists specifica-
tions of the machines over which our GPUs are spread.

We zero-pad the input tensors for our kernels such that
the matrix dimensions are multiples of the thread block tile
size. This padding step needs to be performed only once:
subsequent tensors that are the output of TCs are automatically
zero-padded. We hence do not include the time necessary
for this padding in the time measurements in this section.
Section IV-F will discuss the memory and run time overhead
of padding in detail, as well as potential options to eliminate
the need for padding entirely.

We compare our performance to that of cuTENSOR 2.0.1.
We use the original, non-padded inputs for cutTENSOR, as it
does not require padding. We verified the correctness of our
reported kernels by comparing their output to cu”TENSOR’s.

We take the minimum of 5 runs of each TC, for our kernels
and cuTENSOR’s. Figure 1 shows the relative performance
for each GPU and for each TC 4, i.e. rel_perf, = w
The TCs shown in a colour other than blue 1ndinc]§tze:()urfhat
we discuss them in more detail further in this section.
The figure also shows the geomean speedup of the relative
performances GM; = geomean({rel_perf,}) across all 48
TCs in black. Additionally, we show the geomean speedup
GM, = geomean({max(1,rel_perf;)}) in red. This is the
geomean speedup observed by an end user that can choose the
best performing kernels between ctTENSOR’s and ours over
an end user whose only choice was the existing cuTENSOR.

B. Overall Results per Architecture

The discrepancy in relative performance of our Julia TC
package between different architectures can generally be ex-
plained by the amount of architecture-specific optimisations
that are relevant for that architecture. Unlike cuTENSOR,
our package does not implement any such optimisations for
its kernels, so we expect them to exhibit lower relative
performance on newer architectures that can benefit from more
available optimisations. For both Volta and Turing, the only
significant optimisation is the use of mma.sync combined
with shared memory swizzling [19]. Since this optimisation
seems to be much more important for Volta than it is for
Turing (see later), we observe our kernels’ best relative
performance on the Turing-generation RTX 2080 Ti, with
geomean speedups of GM; = 195% and GM; = 199%.
The V100 and V100S, both of the Volta generation, follow
with identical speedups of GM; = 127% and GM; = 162%.
Interestingly, this performance was obtained with kernels using
the same parameters for the V100 and V100S, i.e. no separate
tuning for the V100S was necessary. This is likely because

both GPUs are architecturally very similar, even though the
V100S has a higher memory capacity, memory bandwidth,
and FP16 Tensor Core throughput compared to the V100 [44].
Finally, on the Ada-generation GPUs our kernels exhibit the
lowest relative performance, since these GPUs additionally
allow for the asynchronous copy optimisation [20]. For these
GPUs, we achieve speedups of GM; = 120%, GMs = 130%
(RTX 4070), GM; = 117%, GM,; = 126% (RTX 4080);
and GM; = 121%, GM; = 129% (RTX 6000 Ada). In
conclusion, our kernels achieve a net speedup across different
GPU architectures, even though we did not yet incorporate
any architecture-specific optimisations.

C. Detailed Performance Analysis

To gain more insights in the obtained results, we profile TCs
with outlying performance, either for a specific architecture or
across architectures, using NVIDIA Nsight Compute [45].

Across all architectures, TC13 (orange in Figure 1) is among
the worst performing TCs. For Volta and Turing, cuTENSOR’s
implementation consists of two kernels: a GEMM kernel of
which the launch configuration contains a lot more thread
blocks than our optimal kernel (thus exploiting parallelism
more), and an additional reduction kernel. This is likely a
Split-K optimisation, specific for problems with small M
and N, and large K [46]. A normal GEMM implementation
on GPUs parallelises tiles in the M- and N-dimensions
across thread blocks. Split-K additionally parallelises across
the K-dimension, and then sums the resulting tiles using a
separate reduction kernel, improving parallelism at the cost
of a separate reduction step and additional memory to store
intermediate results. Indeed, out of the suite’s 48 TCs, TC13
is the one for which M - N is the smallest, and K is the
largest. For Ada Lovelace, we do not notice a second reduction
kernel, but cuTENSOR’s launch configuration has 7.5x — 17.5x
as many thread blocks as ours, hence increasing parallelism.
This may again indicate a Split-K optimisation, but fused in the
first GEMM kernel, or other similar optimisations that improve
parallelism for these kinds of problem sizes.

TC14 (green in Figure 1) is similar to TC13 in many
ways: same tensor dimensionality, similar resulting GEMM
sizes, and cuTENSOR uses a separate reduction kernel for it.
Nonetheless, our kernels’ relative performance is much better
for this TC. The reason lies in the different order of indices in
the TC, and thus a different, suboptimal memory access pattern
that results in two orders of magnitude more stalls related to
global memory operations for TC14 than TC13 in cuTENSOR,
slowing down the cuTENSOR kernel by a factor of 40x. We
conjecture that the run time is dominated by this suboptimal
memory access pattern in global memory, so that the Split-
K optimisation is less important to determine performance,
closing the gap between our kernels and cuTENSOR’s.

The next interesting category of TCs consists of TC20,
TC22, and TC24 (red in Figure 1), for which our kernels
perform badly on Volta, but exhibit decent performance on
other architectures. When comparing the ratio of bank conflicts
when loading from shared memory between our kernels and
cuTENSOR’s, we notice that, for Volta, our kernels have

Table II
DETAILED SPECIFICATIONS FOR THE MACHINES USED FOR EVALUATION
Specification | Machine 1 Machine 2 Machine 3 Machine 4 Machine 5
CPU Intel Xeon E5-2603 v4 | Intel Xeon E5-2637 v2 | AMD TR 2990WX | AMD 7800X3D | AMD TR PRO 7985WX
RAM 382 GB 64 GB 128 GB 32 GB 512 GB
GPU V100, V100S RTX 2080 Ti RTX 4070 RTX 4080 RTX 6000 Ada
0S Ubuntu 24.04.3 Debian 12 Debian 12 Arch Linux Ubuntu 24.04.3
o TC13
e TCl4
e TC20, TC22, TC24
e TC28, TC30, TC41
6 1000% e e ---- Geom. mean GM;
Lé) ° ---- Geom. mean GM,
& 500% %
'LS) o ° '3 L) o
° n:t’ 0.:0’ o:
§ 200% N N 195% ..‘:?.& = - (]
s . iz_;- 77777 162% ----- ;‘::E; 77777 162% ’ t;: o .':. or .:w
o 127% ------e&---——- 127% ------So—--——- eeetosese 20% ,,::,% 8- 130% % oo u-abessooz: 126% 121% -qesseegse :129
S 100% “og “ge % U 'u..:....i' 117% 0055 A% i
2] % o 0.-.‘.‘.. ®000ae Hooe00® o
g ou:c‘ ougo' =
S 50% 5 =)
“(1:) [1) L]
a
20%
10%
V100 V100S RTX 2080 Ti RTX 4070 RTX 4080 RTX 6000 Ada
(Volta) (Volta) (Turing) (Ada Lovelace) (Ada Lovelace) (Ada Lovelace)

Figure 1. Swarmplot of the performance results of our kernels relative to cuTENSOR on different architectures, for the 48 TCs in the TCCG benchmark
suite, along with the two geometric means GM; and GM2 for each GPU architecture. Explicitly discussed groups of TCs are shown in different colours.

tmin,i,cuTENSOR

tmin,i,ours

Note that the y-axis, showing the relative performance

199x, 353x, and 529x as many bank conflicts. Compare
this with the kernels for the same TCs on Turing having
3% fewer bank conflicts compared to cuTENSOR, and on
Ampere having at most an order of magnitude increase in bank
conflicts. Again, this seems to indicate that the shared memory
swizzling optimisation to reduce shared memory bank conflicts
is more important for Volta than for Turing or Ampere. Indeed,
we notice that the TCs for which our kernels perform the worst
for Volta roughly correspond to the TCs for which the bank
conflict ratio #m% is the largest. However, this
is not a general rule: both TC28 and TC30 have high bank
conflict ratios as well, and for these two TCs our kernels are
among the best performing on Volta.

The final category of TCs to discuss is TC28, TC30, and
TC41 (shown in purple in Figure 1). For these TCs our kernels
achieve relative performances of 660% — 891% on Volta.
The most prominent difference with cuTENSOR’s kernels lies
in memory-related metrics. cu”TENSOR’s have more global-
memory-related stalls, and an increased number of transactions
from device memory to the L2-cache, as well as from the L2-
cache to the L1-cache. This might be because of a suboptimal
memory access pattern for cuTENSOR. Given its closed-
source nature, it is unclear whether this is the result of lacking
heuristics in cuTENSOR, or because its kernels are not flexible
enough to enable the use of a better memory access pattern
like our kernels. Finally, we note that, while our kernels exhibit
large relative performance on other architectures as well for
these three TCs, the difference in the discussed metrics is less
pronounced there. For Ampere, one possible explanation is

, is logarithmic.

that asynchronous copy allows for better latency hiding, thus
reducing the effect of suboptimal access patterns.

D. Operator Fusion

One important advantage of our kernels over cuTENSOR’s
is the ability to fuse arbitrary elementwise operations. While
cuTENSOR also allows for operator fusion, the supported ele-
mentwise operations are limited to a pre-defined list, whereas
our kernels support arbitrary Julia expressions as operations.
To study the impact of operator fusion on performance, we
execute all 48 TCs in the TCCG benchmark suite for two
additional cases. Both cases involve identical elementwise
operations applied to A, B, and C, i.e. they are TCs of the
form CHC(ImUIn) «— \P(\IJ(AHA(IWUIk)) '\IJ(BHB(]kuln))). For
the first case, we chose ¥ = ReLU, a common activation
function in neural networks [47]. This activation function is
supported by cuTENSOR, and is hence fused in the TC kernel.
The second case involves ¥ = Leaky ReLU, a variant of
ReLU that avoids zero gradient for negative inputs [29]. As
this activation function is not supported by cuTENSOR, it
cannot be fused, and requires an additional kernel launch
and the reloading of data. If the original data needs to be
kept, cuTENSOR’s non-fused approach additionally requires
extra storage for this configuration. For the evaluation in this
section, we assume the original data can be overwritten, and
perform the elementwise kernels in-place. Our kernels fuse all
elementwise operations for both configurations.

We do not perform a separate sweep for the kernels here,
but instead reuse the optimal parameters from Section IV-A.

O Ours (none) 806
O Ours (RelU) o
o Ours (Leaky RelLU)
o«
8 500% A A CUTENSOR (RelU) o o
z - A CUuTENSOR (Leaky RelU) o
55 0 %% Cc® °©
= 8 a 06 o o 5
o © 200% 1 6 9
Sy 5]
[
B) 6@0(3%00&@0 2
2 8 100% - AAAOAAAAAAAAAAAA RRRQRRARAAAAAAAAAAANAADALNA
Lz o AAAAA AA A
o c
2¢g 50% 1 ee
c g @] A
Eo g & b4
Lo ISLIVN © N A s a8
S5 20% 4787, 8 A p8TAL an BpTBp B
10% A a4

0 4 8 12 16 20 24 28 32 36 40 44 48
Tensor Contraction

Figure 2. Performance results on the TCCG benchmarks of our kernels (O)
relative to cuTENSOR (A) for three configurations: without elementwise
operations (blue); applying ReLU to A, B, and C (green); and applying a
leaky ReLU to A, B, and C (purple). Performance is relative to ctTENSOR
without elementwise operations. Except for Leaky ReLU for cuTENSOR, all
elementwise operations are fused in the TC kernel. All results are obtained
on the RTX 2080 Ti (Turing) by taking the minimum over 10 runs.

500%

0@

&5 200% - ©e0%o

X o
2% 8 ° e 8@
= =
2% o 01801188
2 5 100%] AapASNNA %AAXQAAAAAAAAAAA@AAAA%AA AAMM
- § o © © 6606000
= @600 cReBsR8ee @ o ours (none)
©
oE 50%- 9 % o O Ours (RelU)
g€ X A A © o Ours (Leaky RelU)
5 & A, o & A CUTENSOR (RelU)
Eg a 2aa A cuTENSOR (Leaky ReLU)
S o o
2 20% A A A A A A A
g = A a A A A A

AAA
10% A A DA DA AA A

0 4 8 12 16 20 24 28 32 36 40 44 48

Tensor Contraction

Figure 3. RTX 4070 performance results with elementwise operations.

The additional elementwise operation may increase register
usage beyond the SM-register limit, resulting in the kernel no
longer being able to be launched with the required number
of threads. For that reason, we additionally instruct the PTX
compiler to limit register usage by introducing spills. This was
ultimately only necessary for one configuration (TC 28 with
leaky ReLU on the RTX 4070). For the other configurations,
this extra option has no influence on the generated instructions.

Figures 2 to 4 show performance results for the RTX
2080 Ti, RTX 4070, and RTX 6000 Ada, respectively, rel-
ative to cuTENSOR without elementwise operations. As ex-
pected, cu”TENSOR with ReLU performs almost identically to
cuTENSOR without elementwise operations, as this operation
is fused. cuTENSOR with Leaky ReLU cannot use fusion,
resulting in large slowdowns from additional kernel launches
and data reloading. On the other hand, our kernels exhibit
minimal slowdowns when introducing elementwise operations,
as they are all fused in the TC kernel.

500% - QOurs (none)
Ours (ReLU)
Ours (Leaky RelU) o
CcUTENSOR (RelU)

CuTENSOR (Leaky RelLU) 5]

O¢

>D> o000

]

200% 8
o Q o)

oL @
100% A AAeeA@AQAAAgAAé?BXéAAA%AAAAM@A@@AQOAggoAA@SASRA

o O,
) 008 g © 8 @ @AogeAAA A
50% - o

20% A A A A A A A A

Performance relative to cuUTENSOR
w/o elementwise operations [%]

10% - A A a

0 4 8 12 16 20 24 28 32 36 40 44 48
Tensor Contraction

Figure 4. RTX 6000 Ada performance results with elementwise operations.

1.00

9 0.75 A
F& 0.50 A
o
a 0.25
0.00 T T T T T T T
0 25 50 75 100 125 150 175 200
Relative performance to cuTENSOR [%]
1.00
S 0.75 — TC13(30k) ~ —— TC24(339%)
e 0.50 ~ TC14 (29k) —— TC28 (325k)
§. ! / —— TC20 (353k) TC30 (331k)
& 0.254 —— TC22 (333k) —— TC41 (5117k)
- 7
0.00 T T T T
0 20 40 60 80 100

Relative performance to GemmkKernels best configuration [%]

Figure 5. Cumulative distributions of the relative performance for randomly
sampled, valid configurations for 8 TCs on RTX 6000 Ada. Top: performance
relative to cuTENSOR. Bottom: performance relative to our best configura-
tion. Each distribution samples 1% of the total search space for each TC.
Parenthesised numbers indicate estimated total valid configurations.

E. Random Sampling Efficiency

Section III-D discussed that we determined the best TC con-
figurations by randomly sampling. For the eight TCs analysed
in Section IV-C, Figure 5 shows the cumulative distribution
functions (CDFs) of the relative performance obtained with
randomly sampled, valid configurations, covering around 1%
of the total search space for each TC.

Well-performing configurations are sparse, so extensive
sampling is needed to approach optimal performance. Our
prototype sweep pipeline uses parallel compilation workers
(limited by the number of CPU cores and RAM), and one mea-
surement worker per GPU. The configuration space sampling
time hence depends heavily on the used machine. On our RTX
6000 Ada machine (specifications in Table II), compilation
workers averaged 0.18 valid configurations per second per
worker, while the measurement worker achieved 0.30 configu-
rations per second per GPU, meaning two compilation workers
could saturate one measurement worker.

Measurement throughput has room for improvement, how-
ever. Our sweep pipeline filters out invalid configurations at
multiple stages, such as before kernel generation by checking
preconditions on parameter assumptions our GETT implemen-
tation makes, after compilation when, e.g., the PTX compiler
failed to find sufficient registers, and during testing when a

kernel crashes, e.g., due to an illegal memory access. The
later the filtering, the more time is wasted. This is particularly
the case when a kernel crashes, because it requires a complete
GPU worker restart. While we invested some effort in advanc-
ing the filtering in our research prototype pipeline by inserting
additional preconditions, around 2% of the configurations still
get filtered as they crash. As a result, startup and one-time
operations (e.g. data allocation and initialisation) consumed up
to 76% of measurement worker wall time. In our estimation,
eliminating all such crashing configurations would speed up
the measurement to around 1.03 configurations per second per
GPU. Further improvements might come from reducing inter-
measurement sleeping periods, currently used to prevent GPU
throttling that adversely affects measurement accuracy.

These throughputs enable estimation of the sweep time
required to reach a target performance. To that end, the legend
of Figure 5 shows estimated total valid configurations (V') for
each TC. For a TC with CDF F(z) = Prob|perf < z], finding
a configuration with performance > x requires sampling at
most n = F(z) - V configurations. The corresponding worst-
case run time on a machine with ¢ GPUs can be calculated
using the measurement throughput as follows:

n configurations
g GPUs - 0.30 configurationss—1 GPU ™!

)

However, sweeps can be terminated much earlier. The
number of configurations tested before finding one with per-
formance > x follows a negative hypergeometric distribu-
tion NHGy k-(k) with N = V, K = F(z) -V, and
r = 1. The expected number of tested configurations is
n=Ek+1= m, convertible to an expected
run time using Formula (7).

Consider TC30 as a concrete example. Figure 5 (top) shows
F(100%) = 0.38 and V' = 331000, i.e. 38% out of 331 000
valid configurations underperform cuTENSOR. On a single-
GPU machine, finding a cuTENSOR-beating configuration
requires sweeping at most 125 780 configurations in the worst
case (116 h), but only 1.61 configurations on average (5.4 s).

As speed-ups over cuTENSOR can be obtained within
minutes, running sweeps for frequently-executed TCs seems
feasible in production. However, finding the optimal configu-
rations remains time-consuming due to the flat tail of CDFs at
high relative performances (Figure 5, bottom). Techniques to
prune the search space or to identify promising configurations
upfront are thus interesting future research goals.

F. Padding

Unlike cuTENSOR, our kernels require zero-padding in-
put tensors to ensure that the resulting matrix multiplication
dimensions are multiples of the thread block tile size. The
preceding evaluations do not account for the overhead intro-
duced by this padding requirement. This section analyses how
padding affects both run time performance as well as memory
consumption, and discusses potential strategies to eliminate
the padding requirement altogether.

Figure 6 shows the impact of padding on memory con-
sumption. The top graph presents the memory overhead at

the individual tensor level, for all 48 TCs on Turing and Ada
Lovelace GPUs. It treats each individual tensor as a separate
data point, i.e each TC C < A-B+C contributes three distinct
samples to the distribution. This approach reveals how padding
affects each tensor independently, showing the variation in
overhead across all tensors in the TCCG benchmark suite, and
across different GPUs. Across the entire benchmark suite, 27%
of tensors require no padding. 54% of tensors experience a
modest padding overhead, ranging from +0.93% to +33%. The
remaining 19% of tensors incurred a more substantial memory
overhead, with storage increases from +37% to +255%.

The per-tensor memory overhead can thus be quite sig-
nificant in some cases. However, these large relative storage
overheads only occur for tensors that have dimensions of small
extent, and for which a limited amount of such dimensions
are mapped to a single GEMM dimension. For a given
TC, this can only occur for a single tensor, that also has
the smallest overall size of all tensors involved in the TC.
The other, bigger tensors will require less padding relative
to their own size, but because they are larger, they will
dominate the overall memory consumption in absolute terms.
For example, consider TC3 abcd-dbea-ec, with unpadded
extents (a,b,c,d,e) = (72,72,24,72,72). With a tile size
(M,N,K) = (128,64,32), the B-tensor requires padding
K = e from 72 to 96, and N = c from 24 to 64, yielding
a substantial +255.55% overhead. On the other hand, the A-
tensor only faces a +33.33% overhead (as a result of padding
K = e from 72 to 96), and the C-tensor a +166.66% overhead
(due to padding N). However, since the substantially padded
tensor B’s contribution to the overall memory consumption
is negligible, the overall additional memory consumption is
dominated by A and C, which have lower padding overhead.
Thus, the total extra memory consumption due to padding is
actually much less than displayed in the top graph of Figure 6.

To evaluate the total memory impact of padding per TC,
the bottom graph in Figure 6 presents the memory overhead
at the TC level, treating each TC as a single data point.
Here, the overhead is calculated by summing the padded
sizes of all three tensors and dividing by the sum of their
unpadded sizes. This provides a more holistic view of the
memory overhead of padding, reflecting the total additional
memory required to execute each tensor contraction. The
per-TC overheads range from +0% to +77.8%, significantly
lower than the per-tensor overheads. 9% of TCs require no
padding for any of the input or output tensors. Half of the
TCs have a per-TC padding overhead below 4%, and 72%
of TCs maintain overheads lower than +10%. These results
demonstrate that although individual small tensors may incur
substantial padding overhead, the overall memory impact on
complete TC operations remains relatively low.

Figure 7 shows the run time impact of padding on our
four newest GPUs. It shows the CDF of the performance
of our kernels relative to cuTENSOR. Each subplot shows
all four combinations of including/excluding the padding and
unpadding kernels in the run time of our kernels. The results
reveal that padding can substantially affect run time, with the
majority of the overhead stemming from padding input tensors
rather than output tensor unpadding.

1.00
.5 0.75 A
S 0.50
o
<]
a 0.251
0.00 T T T T T T
0 50 100 150 200 250
00 Padding memory overhead per tensor [%]
. =
.5 0.75 4
I3 0.50 -
<
a 0.2541
0.00 + T T T T T T T T
0 10 20 30 40 50 60 70 80

Padding memory overhead per contraction [%]

Figure 6. Cumulative distributions of the relative memory overhead of padded
vs. unpadded tensors on Turing and Ada Lovelace. The top graph shows the
overhead distribution per tensor, i.e. each TC C < A - B + C results in

A, B Cpa
three samples Ll p“dded“ R \‘B p“fld“}‘ I l, p“d‘fe,d!‘ . The bottom graph shows the

distribution of the overhead per tensor contraction, i.e. each tensor contraction
‘Apadded‘+‘Bpaddedl""cpaddedl
1ded |1 Banpadded |+ Canpadded | *

only results in a single sample A

Consequently, for TCs requiring significant padding, our
library only offers improved performance over cu TENSOR in
specific scenarios: when input tensors are stored pre-padded or
can be generated thusly, when padding costs can be amortised
across multiple TCs that reuse the same input tensors, or
within computational pipelines consisting of a chain of TCs,
where intermediate results remain in padded form such that
padding overhead is only incurred at pipeline initialisation.

Note that we reused the TC parameters from earlier rather
than conducting a separate sweep. Consequently, the param-
eter selection process did not prioritise configurations with
reduced padding requirements to minimise padding overhead.
A dedicated sweep accounting for the additional run time
costs incurred by padding could potentially yield improved
results. Additionally, our padding and unpadding kernels use
a naive implementation using two broadcast operations: one
for data copying, and another for zeroing the padded region.
Combining these into a single kernel that is additionally
specialised on the extents of the involved tensor would likely
result in a noticeable performance improvement, though such
optimisations are beyond the scope of this work.

Our kernels require padding for two main reasons. First,
to avoid handling partial tiles at tensor boundaries, all prob-
lem dimensions must be multiples of the thread block tile
size. This ensures that the nested computation loops only
process complete tiles, avoiding the need for epilogue logic.
Second, our kernels use vectorised memory operations, which
necessitate proper alignment: for 128-bit vector loads of FP16
data (8 elements per load), tensor extents and strides must
maintain 128-bit alignment. Both requirements could poten-
tially be eliminated through various approaches. For partial
tile handling, techniques such as predicated loads/stores where
out-of-bounds accesses are masked by thread predicates, or
the Tensor Memory Accelerator (TMA) on Hopper-generation
GPUs, which provides hardware-accelerated boundary han-
dling, allow kernels to process tensors of arbitrary dimension
without padding. For alignment requirements, hybrid loading
schemes could be used that combine vectorised loads for
aligned addresses with scalar loads for the remaining elements.

RTX 2080 Ti (Turing)

0.0 += T T T T

1.0 v

RTX 4070 (Ada Lovelace)
0.0 T T T T T

0.8

S
£ 0.6
15}

S 0.4+
a

o
N
N

:

RTX 4080 (Ada Lovelace)

RTX 6000 Ada (Ada Lovelace)

—— Excluding (un)padding kernels
Unpadding kernel only

—— Padding kernels only

—— Including (un)padding kernels

Proportion

° o o o = «
N B O ® O
"

o
IS)

50 100 150 200 250 300
Relative performance to cuTENSOR [%]

Figure 7. Cumulative distributions of TC run times across four GPUs of two
generations, showing performance relative to the citTENSOR baseline. Each
of the four subplots shows four configurations: (1) our kernels excluding both
padding and unpadding operations, (2) our kernels with unpadding the output
tensor C only, (3) our kernels with padding the input tensors A, B, and C
only, and (4) our kernels including both padding and unpadding.

However, implementing these padding-elimination techniques
introduces additional code complexity, and potential perfor-
mance regressions due to the additional control flow overhead,
placing them beyond the scope of the current work.

G. Holistic Performance Analysis

Section IV-C analysed the performance of TCs with outlying
performance. This section focuses on a more holistic perfor-
mance analysis across all TCs to answer two questions: (1)
Which aspects of our kernels and cuTENSOR’s explain our
performance improvement or regression, and (2) For which
types of TCs (extents, aspect ratio, padding requirements)
should an end user prefer our library over cuTENSOR.

For the first question, we ran all TCs under the Nsight
Compute profiler [45] on all our GPUs, gathering all metrics
for both libraries, with the best parameters found during
the sweep. We calculated the correlation of metrics and the
%-ratios on the one hand, with the run times and their
ratios on the other hand. We use the Pearson correlation p to
detect linear relationships, and the Spearman correlation s to
uncover monotonic relationships. We looked at metrics with
the highest maximum absolute correlation m = max(|p|, |s|),
both overall across all GPUs, as well as individually per
GPU. We filter out metrics that are by definition (in)directly
correlated with run time, such as number of elapsed cycles.

The results differ quite significantly over different GPU
architectures. On the older architectures (Volta and Turing),
the highest correlation (around 0.75) occurred for metrics
related to “no instruction stalls”. On these architectures, 80%
of cuTENSOR'’s kernels suffer more from these types of stalls
than our kernels. These stalls occur when warps are stalled
waiting for an instruction to be fetched, e.g. due to instruction
cache misses. Potential reasons for this could be a larger in-
struction footprint, worse instruction locality due to excessive
branching, or more divergence between threads. To exclude
that this could be caused by cuTENSOR’s kernels having to
include extra logic to handle the non-padded layouts (which
would bias the performance comparison in Section IV-A),
we re-ran cuTENSOR’s kernels with padded inputs. With the
exception of TC29 on the RTX 2080 Ti, all TCs remained
equally performant or suffered a slowdown on cuTENSOR
for padded inputs. This hints that the potentially extra logic
due to unpadded inputs is not the reason for the extra stalls.

On Ada Lovelace, these same metrics only reach correla-
tions of 0.18 — 0.39. For these GPUs, the most correlated
metrics (0.68 — 0.89) are related to shared memory operations.
Our kernels typically have more shared memory instructions
and memory requests to the load-store unit than cuTENSOR’s,
and are stalled much more often on memory dependencies.
Based on the distribution of bank conflicts over different GPU
generations, it is clear that this cannot stem from an increased
number of bank conflicts. Instead, integrating support for hard-
ware features that perform global-to-shared memory copies
more efficiently, such as Ampere’s asynchronous copy, are
integral to improve performance on Ada Lovelace.

For the second question, we perform a similar correlation
analysis, now with metrics related to the TC’s aspect ratio and
extents. The considered metrics include the M, N, K dimen-
sion and arithmetic intensity % of the equivalent
GEMM and, for each combination x and y of two GEMM-
dimensions, their product xy, their quotients £ and %, and their
“squareness” max(Z, %). We calculated these metrics using
both the unpadded and the padded extents. We also include
the padding ratios % per dimension z, and per tensor.

Generally, the unpadded variant of a metric has a slightly
higher correlation than the padded one, both across all GPUs
and for each GPU individually. This, in combination with the
relatively low correlations of padding ratio metrics, aligns with
our intuition that the padding overhead is a worse predictor
for relative performance than the order of magnitude of the
dimensions. Still, due to the need for (un)padding kernels, for
TCs requiring padding, our library should only be preferred
over cuTENSOR in the cases discussed in Section I'V-F.

Furthermore, K and M - N are the metrics most correlating
with relative performance. The higher M - N, the better our
kernels perform compared to cutTENSOR. This makes sense,
since the underlying GEMM kernels in GemmKernels are
designed to exploit the massive parallelism of large matrices,
and contrary to ctTENSOR do not include optimisations for
small matrices. Surprisingly, a higher value of K corresponded
to worse performance of GemmKernels compared to cuTEN-
SOR. On first sight, this would indicate that one should prefer
our kernels over cuTENSOR for small K only. This is un-

expected because of the above observation on GemmKernels’
optimisation for large, not small matrices, and because large
K increases the number of stages and thus the efficiency of
our kernels through software pipelining.

This spurious correlation turned out to be due to the way
the tensor extents are chosen in the TCCG benchmark suite.
In our benchmark suite, the tensor extents are chosen in such
a way that the resulting tensors are roughly the same size for
all TCs. This means that a TC with low K will inevitably be
associated with a high M and/or N, increasing parallelism.
Indeed, the K dimension and the product M - N have a large
negative Spearman correlation of —0.80. Additionally, most
TCs in TCCG have a relatively low K: 69% of TCs have a K
that only allows at most three software pipelining stages. Thus,
the reason that increasing K lowers the relative performance
of our kernels, is because this decreases M - N, and thus the
potential parallelism of the GEMM kernel. The increase in K
should in theory also result in higher performance due to the
increase in pipeline stages, but this effect is not noticeable in
the benchmark suite due the involved K-values being so low
so as to not make much of a difference.

V. DISCUSSION

High-level languages like Julia boost productivity by ab-
stracting away low-level details such as memory management.
Programmers must still understand compiler optimisations,
however, as minor source code changes can dramatically affect
generated machine code and performance. This requirement
undermines productivity gains and necessitates low-level un-
derstanding even when using high-level languages.

A. Compiler Issues

In our research, we have discerned two main categories of
such issues. The first category involves thresholds used in the
compiler’s cost functions and static analyses. These thresholds
sometimes prevented optimisations like loop unrolling or in-
lining when exceeded, and caused compilation failures when
static array sizes hit heuristic limits in type inference.

The second category concerns the phase ordering prob-
lem in compilers. Modern compilers apply transformations
sequentially, but these can be destructive—one optimisation
may prevent others from being applicable. While compiler
developers optimise the transformation order using sample
programs, we encountered cases where this ordering caused
missed opportunities. For instance, when explicitly vectorising
memory operations for FP16 Tensor Core operations in our
kernels, we found that type changes introduced by LLVM’s
instcombine pass reduced vectorisation from 128-bit to 64-bit
loads because the NVPTX back-end limits i16-vector loads
differently from half-vector loads.

These two categories are not mutually exclusive. While
experimenting with shared memory swizzling, we compared
the generated code for two kernel versions. In one version, we
had manually restructured the code, implementing a form of
software pipelining to prefetch data during the loading from
shared memory. As data then gets loaded and operated on
in different iterations, this restructuring resulted in slightly

longer data flow paths in the generated LLVM IR. The data and
address computations themselves did not change. The compiler
middle-end’s known-bits analysis was not hampered by the
restructuring, so for both versions, it converted additions to
bitwise ORs for canonicalisation, assuming this might enable
further optimisations. The back-end featured its own known-
bits analysis, however, and this one imposed a threshold
limit on how deep information is propagated from producers
to consumers in the IR. Because of this limit, the back-
end analysis lacked sufficient precision to convert the ORs
back to additions, preventing the use of efficient register-plus-
immediate addressing modes, resulting in explicit ADD and
OR instructions instead of optimised memory access patterns
and in increased register pressure. Ultimately, this caused a
large performance hit that could not have been explained
without detailed knowledge or analysis of the compiler’s
intricacies and its sensitivity to code structure.

B. Underlying Reasons

Compiler developers set thresholds and optimisation orders
by tuning them on what they consider and collect as repre-
sentative program sets, optimising for compilation time and
code quality. However, these settings may not generalise well
beyond the original tuning set. Our kernels likely differ from
typical tuning programs for two reasons. First, tuning sets
usually contain manually written code fragments rather than
automatically generated kernels. Second, dense linear algebra
kernels are often written in assembly to bypass compilers
entirely, making them less relevant to compiler developers
and unlikely to be included in tuning sets. Consequently,
compilers are poorly optimised for the patterns in our auto-
matically generated kernels. This problem is amplified in high-
level languages like Julia, which involve complex compilation
pipelines spanning multiple projects—from Julia-to-LLVM
compilation through LLVM middle-end passes to NVPTX
backend code generation. Each component is maintained by
different teams with distinct priorities and tuning sets, making
it highly unlikely that our kernel patterns have been tested
across the entire compilation flow.

C. Consequences for Flexible Library Developers and Users

Compiler sensitivity to code structure poses unique chal-
lenges for flexible library developers. Unlike fixed libraries
where developers can verify all kernels before shipping bina-
ries, flexible libraries generate kernels based on user configu-
rations, making comprehensive pre-verification impossible.

The discussed issues complicate automatic tuning by intro-
ducing performance discontinuities from minor code changes.
This noise hinders tuning algorithms from learning the kernel
parameter-to-performance mapping. Even though some models
such as Bayesian optimisation [48] can deal with discontinu-
ities, the flakiness still seems hard for black-box optimisation
algorithms to deal with if it becomes too prevalent.

Paradoxically, autotuning might help detect flakiness. Major
deviations between predicted and measured performance could
potentially signal missed optimisations, alerting developers to
investigate. Verifying this hypothesis is future work.

One can argue whether eliminating this flakiness is the
responsibility of the library users or of its developers. Users
will likely have to verify their specific kernel instantiations,
increasing usage complexity and expertise requirements com-
pared to fixed libraries. Yet library developers should also bear
some responsibility, by designing with compiler behaviour in
mind, potentially trading flexibility for optimisation reliability.

For the flakiness as a result of thresholds, a potential
solution might be for the library developers to make use
of attributes such as clang::always_inline [49] (to
force inlining, ignoring the inlining cost), or metadata such
as !{!"1lvm.loop.unroll.full"} [50] (which forces
full loop unrolling). We think two requirements need to
be met for this to be viable. First, the library developers
have to be sure that the used attribute or metadata is not
just a (strong) hint to the compiler (such as the inline
keyword), but actually forces the optimisation (such as the
clang::always_inline attribute; although even that at-
tribute does not guarantee in all cases that inline substitution
actually occurs [49]). Second, there needs to be some feedback
(in terms of a compiler diagnostic such as a warning or error)
to the user of the library when a given optimisation that was
requested, was not applied for some reason. Ideally, the library
developers can rely on the compiler for this. For example,
when Clang notices a clang: :always_inline attribute
in a context where it is not applicable, it emits a warning.

VI. RELATED WORK

In 2018, Springer and Bientinesi classified the state of the
art for TCs in three categories [5]. Loop nesting approaches
apply loop optimisations such as loop fusion and unrolling to
the mathematical formulation of TCs [9], [10], [11]. Loop-
over-GEMM approaches decompose TCs into a sequence of
two-dimensional matrix multiplications, for which a GEMM
kernel is re-used [8], [12]. TTGT also re-uses GEMM kernels,
but combines them with tensor transposition kernels such
that only one GEMM invocation suffices per TC. Several
TC frameworks use TTGT, such as the Cyclops Tensor
Framework [13], Tensor Toolbox [14], Tensorlab [15], and
libtensor [16]. While these three approaches perform well for
some TCs, their performance suffers on certain classes of TCs
due to strided accesses, additional kernel launch overhead, or
extra storage requirements. Springer and Bientinesi’s alterna-
tive GETT does not suffer from these issues [5]. GETT relies
on the ability of flexible GEMM kernels to customise the
storage layout of the matrices to perform arbitrary TCs without
extra transposition kernels. It has been adopted by later work
as well [6]. Independently, Matthews proposed TBLIS [17],
which also reuses flexible GEMM kernels for TCs. It builds
on the BLIS framework’s components to instantiate BLAS
kernels and variants thereof [51]. Contrary to our work, TBLIS
considers only TCs on CPUs.

NVIDIA’s cuTENSOR library builds on the principles of
GETT, but focuses on TCs on NVIDIA GPUs [3] and ex-
ploiting the latest hardware features such as Tensor Cores.
cuTENSOR relies on the flexible kernels in NVIDIA’s CUT-
LASS library [52], which contains a large set of C++ templates

that can be combined and customised arbitrarily to instantiate
GEMM-like kernels. While CUTLASS is open-source, the
source code of cuTENSOR is not (yet) available. As discussed
in the introduction, this is problematic in cases requiring
flexibility beyond the extent that cuTENSOR offers.

Recent CUTLASS releases incorporate CuTe, a C++ tem-
plate library for kernel development for multidimensional data.
Developers can combine CUTLASS and CuTe components
to implement general TCs [53]. However, this approach still
faces significant limitations compared to our work: the current
implementation relies heavily on the Tensor Memory Acceler-
ator (TMA) for address arithmetic, restricting compatibility to
Hopper GPUs and excluding older generations. Furthermore,
despite CUTLASS and CuTe being open-source, customisation
requires deep understanding of their complex template ma-
chinery, which can present a substantial barrier to developers
seeking to adapt these tools for specific TC computations or
alternative hardware targets.

Compiler-based approaches such as XLA [54], TVM [55],
and others built on infrastructures like MLIR [56], along
with specialised tools like Triton [57] and TACO [58], have
emerged for optimising TCs on GPUs. Some, like Triton [57],
operate on similar abstractions as our work (individual fusion-
capable kernels), but differ in their approach: Triton provides
a Python DSL to express kernels that are then compiled,
whereas our work provides a flexible library of pre-structured
kernel templates with configurable fusion capabilities. Both
approaches support autotuning, but target different use cases:
Triton enables custom kernel development with reduced pro-
gramming complexity, while our templates provide high-
performance solutions for standard TC patterns without re-
quiring kernel programming. Others, such as TVM [55], are
end-to-end ML compilers, and optimise entire ML models
represented by a computational graph. After graph-level op-
timisations each node is lowered to efficient kernels through
techniques that automatically handle the complexities of mem-
ory hierarchy, thread scheduling, and instruction-level op-
timisations. Like our work, they support auto tuning and
operator fusion. However, they differ in scope (ML models’
entire pipelines of TCs vs. a single TC) and abstraction level
(computational graph vs. a single TC node, possibly fused with
an elementwise operation), and thus feature fundamentally
different design spaces. Since these compilers are primarily ac-
cessed through ML frameworks like TensorFlow and PyTorch,
they are predominantly tuned for standard ML operations, and
may exhibit the same sensitivity issues outlined in Section V,
where minor modifications to the source code can lead to
dramatically different machine code and hence performance.
Additionally, some of these systems employ aggressive opti-
misations that impact numerical accuracy [59], which would
likely disqualify them for scientific computations.

The techniques that lower computational nodes to efficient
kernels complement or replace pre-optimised, vendor-provided
libraries where those libraries lack the necessary support for
arbitrary operation fusion [55]. Our work offers the necessary
flexibility, however, and could be used as an alternative. For
example, TVM supports different types of fusion, some of
which could be achieved using our kernels [55]: fusing TCs

16

with injective nodes (i.e. elementwise operations) is supported
through the use of GemmKernels’s transform abstraction, and
fusing TCs with reductions can be achieved with a custom
epilogue. By combining TVM and our TC kernels, one
could benefit from the holistic optimisation offered by these
frameworks, and from the improved numerical accuracy and
potentially improved performance of our kernels. Additionally,
TVM’s global optimisation takes into account preferred data
layouts for each node in the computational graph, and finds a
globally optimal assignment of layouts, inserting the necessary
layout transformations between producers and consumers with
mismatching layout requirements. This could be utilised to
find a global optimum taking into account the run time
overhead of the necessary (un)padding kernels.

More recent work on GPU tensor computations focuses
mostly on optimising specific (classes of) computations in
a certain scientific domain [40], [41], but flexibility remains
largely unaddressed. To the best of our knowledge, our work is
the first that discusses flexibility and its impact on performance
and the productivity of library developers and end users.

VII. AVAILABILITY

Our artefacts are released under an open-source license as
a branch in the GemmKernels.jl package at https://github.
com/JuliaGPU/GemmKernels.jl/tree/tensor-contractions. This
includes our extensions to support tensor contractions, our new
GETT-related components, and the scripts used for autotuning
and evaluation on the TCCG benchmark suite.

VIII. CONCLUSION AND FUTURE WORK

We presented the requirements, design, and implementa-
tion of a flexible, performant TC library in Julia built on
the GemmKernels library. We discussed optimisations and
necessary changes to GemmKernels, our kernel design space,
and how we select the kernel to be used for each TC. After
illustrating the library’s usage on a practical example, we con-
ducted a comprehensive performance and flexibility evaluation
and analysis against NVIDIA’s state-of-the-art cuTENSOR
library. It shows that our kernels achieve on average higher
or comparable performance, often matching and occasionally
surpassing cuTENSOR’s speed, while avoiding the flexibility
constraints that limit cuTENSOR’s general applicability. We
discussed the impact of the compiler on programmer and
end-user productivity in the context of flexible libraries and
high-level programming languages, and proposed potential
alleviations.

We see several promising avenues for extending this work.
First, we have yet to evaluate our kernels on more recent
GPU architectures, such as Hopper or Blackwell, which could
reveal additional optimisation opportunities. Secondly, while
our kernels demonstrate strong overall performance, there are
still some TCs or architectures for which they perform poorly.
Follow-up work could explore GPU-architecture-specific op-
timisations such as Volta’s mma . sync combined with shared
memory swizzling [19], Ampere’s asynchronous copy [20], or
Hopper’s Tensor Matrix Accelerators [21]. Such optimisations
can have a large impact on performance. For example, on

https://github.com/JuliaGPU/GemmKernels.jl/tree/tensor-contractions
https://github.com/JuliaGPU/GemmKernels.jl/tree/tensor-contractions

the V100, using mma . sync instructions instead of WMMA
has resulted in speedups of 1.65x and 1.73x for GEMM
and transformer networks, respectively [19]. Problem-specific
optimisations such as Split-K or Sliced-K [46], or predicated
loads to avoid the need for padding also warrant exploration.
Finally, our current random-sampling-approach to kernel
parameter selection remains suboptimal given the enormous
search space involved. One potential solution is to use a
performance model to either select the optimal kernel param-
eters, or to prune the search space, as done by some TC
libraries [5], [60]. Other possibilities include using machine
learning models such as decision trees or neural networks,
which have shown promise in the literature for tuning GEMM
kernels [61], and could potentially be adapted for TCs.

ACKNOWLEDGEMENTS

This work was funded by the Research Foundation Flanders
(FWO), grant number 1111123N. The authors also thank Nora
Dossche for her valuable feedback.

REFERENCES

[1] NVIDIA. ‘cuBLAS: Basic linear algebra on NVIDIA
GPUs.’

[2] NVIDIA. ‘cuDNN: CUDA deep neural network.

[3] NVIDIA. ‘cuTENSOR: Tensor linear algebra on
NVIDIA GPUs.’

[4] T. Faingnaert, T. Besard and B. De Sutter, ‘Flexible per-
formant GEMM kernels on GPUs,” IEEE Trans. Parallel
Distrib. Syst., vol. 33, no. 9, pp. 2230-2248, 2022.

[S] P. Springer and P. Bientinesi, ‘Design of a high-
performance GEMM-like tensor—tensor multiplication,’
ACM Trans. Math. Softw., vol. 44, no. 3, pp. 1-29, 2018.

[6] J. Kim et al., ‘A Code Generator for High-Performance
Tensor Contractions on GPUs,” in Proc. CGO, IEEE,
Feb. 2019, pp. 85-95.

[7]1 J. Chen, R. G. Edwards and W. Mao, ‘Graph Contrac-
tions for Calculating Correlation Functions in Lattice
QCD; in Proc. PASC, ACM, 2023, pp. 1-10.

[8] E. Di Napoli et al.,, ‘Towards an efficient use of the
BLAS library for multilinear tensor contractions,” Appl.
Math. Comput., vol. 235, pp. 454—468, May 2014.

[9] E. Apra et al., ‘Efficient Implementation of Many-Body

Quantum Chemical Methods on the Intel Xeon Phi

Coprocessor,” in Proc. CS, IEEE, 2014, pp. 674—684.

W. Ma et al., ‘GPU-Based Implementations of the Non-

iterative Regularized-CCSD(T) Corrections: Applica-

tions to Strongly Correlated Systems,” J. Chem. Theory

Comput., vol. 7, no. 5, pp. 1316-1327, 10th May 2011.

[10]

[11] T. Nelson et al., ‘Generating Efficient Tensor Contrac-
tions for GPUs,” in 2015 44th International Conf. on
Parallel Processing, IEEE, Sep. 2015, pp. 969-978.

[12] J. Li et al., ‘An input-adaptive and in-place approach to

dense tensor-times-matrix multiply,” in Proc. CS, ACM,
2015, pp. 1-12.

E. Solomonik et al., ‘Cyclops Tensor Framework:
Reducing Communication and Eliminating Load Im-
balance in Massively Parallel Contractions,” in Proc.
IPDPS, 1EEE, 2013, pp. 813-824.

[13]

B. W. Bader and T. G. Kolda, ‘Algorithm 862: MAT-
LAB tensor classes for fast algorithm prototyping, ACM
Trans. Math. Softw., vol. 32, no. 4, pp. 635-653, 2006.
N. Vervliet et al. “Tensorlab 3.0. ’[Online]. Available:
https://www.tensorlab.net.

E. Epifanovsky et al., ‘New implementation of high-
level correlated methods using a general block tensor
library for high-performance electronic structure calcu-
lations,” J. Comput. Chem, vol. 34, no. 26, pp. 2293—
2309, 5th Oct. 2013.

D. A. Matthews, ‘High-Performance Tensor Contraction
without Transposition,” SIAM J. Sci. Comput., vol. 40,
no. 1, pp. C1-C24, Jan. 2018.

NVIDIA. ‘CUDA C++ programming guide.’

A. Kerr et al, ‘Programming Tensor Cores: Native
Volta Tensor Cores with CUTLASS, NVIDIA GPU
Technology Conference, 2019.

A. Kerr, ‘Developing CUDA Kernels to Push Ten-
sor Cores to the Absolute Limit on NVIDIA A100,
NVIDIA GPU Technology Conference, 21st May 2020.
P. Ramani and C. Cecka, ‘Developing Optimal CUDA
Kernels on Hopper Tensor Cores,” 22nd Mar. 2023.
NVIDIA. ‘CUDA C programming guide — features and
technical specifications.’

C. Cecka and M. Awatramani, ‘Programming Blackwell
Tensor Cores with CuTe and CUTLASS,” 2025.

J. Bezanson, A. Edelman, S. Karpinski and V. B. Shah,
‘Julia: A Fresh Approach to Numerical Computing,
SIAM Rev., vol. 59, no. 1, pp. 65-98, Jan. 2017.

C. Lattner and V. Adve, ‘LLVM: A compilation frame-
work for lifelong program analysis & transformation,’
in Proc. CGO, IEEE, 2004, pp. 75-86.

T. Besard et al.,, ‘Effective Extensible Programming:
Unleashing Julia on GPUs, IEEE Trans. Parallel Dis-
trib. Syst., vol. 30, no. 4, pp. 827-841, 2019.
NVIDIA. ‘cuTENSOR user guide.’

D.-A. Clevert, T. Unterthiner and S. Hochreiter. ‘Fast
and Accurate Deep Network Learning by Exponential
Linear Units (ELUs).” arXiv: 1511.07289 [cs].

A. L. Maas, A. Y. Hannun, A. Y. Ng et al., ‘Rectifier
nonlinearities improve neural network acoustic models,’
in Proc. ICML, Atlanta, GA, vol. 30, 2013, p. 3.
NVIDIA. ‘CUTLASS documentation: Threadblock ras-
terization.’

Hyperopt.jl, 2022. [Online]. Available: https://github.
com/baggepinnen/Hyperopt.jl.

M. D. McKay et al., ‘A comparison of three methods
for selecting values of input variables in the analysis of
output from a computer code,” Technometrics, vol. 42,
no. 1, pp. 55-61, 2000.

L. Li et al., ‘Hyperband: A novel bandit-based approach
to hyperparameter optimization, Journal of Machine
Learning Research, vol. 18, no. 185, pp. 1-52, 2018.
S. Falkner et al., ‘BOHB: Robust and efficient hyperpa-
rameter optimization at scale,” in Int’l Conf. on Machine
Learning, PMLR, 2018, pp. 1437-1446.

https://www.tensorlab.net
https://arxiv.org/abs/1511.07289
https://github.com/baggepinnen/Hyperopt.jl
https://github.com/baggepinnen/Hyperopt.jl

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]
[46]
[47]

[48]

[49]
[50]
[51]
[52]
[53]

[54]
[55]

[56]

[57]

M. E. Ozturk et al., ‘A Performance Portability Study
Using Tensor Contraction Benchmarks,” in Proc. IPDPS
Workshops, 2023, pp. 591-600.

A. Olivry et al., ‘I0Opt: Automatic derivation of I/O
complexity bounds for affine programs,” in Proc. Inter-
national Conf. on Programming Language Design and
Implementation, 2021, pp. 1187-1202.

R. Li et al., ‘Analytical cache modeling and tilesize
optimization for tensor contractions,’ in Proc. CS, ACM,
2019, pp. 1-13.

K. Stock et al., ‘Using machine learning to improve au-
tomatic vectorization,” ACM Trans. Archit. Code Optim.,
vol. 8, no. 4, pp. 1-23, Jan. 2012.

G. Baumgartner et al., ‘Synthesis of High-Performance
Parallel Programs for a Class of ab Initio Quantum
Chemistry Models,” Proc. of the IEEE, vol. 93, no. 2,
pp. 276-292, Feb. 2005.

R. Hu et al,, ‘BCB-SpTC: An Efficient Sparse High-
Dimensional Tensor Contraction Employing Tensor
Core Acceleration,” IEEE Trans. Parallel Distrib. Syst.,
vol. 35, no. 12, pp. 2435-2448, Dec. 2024.

X.-Y. Liu et al.,, ‘High-Performance Tensor Learning
Primitives Using GPU Tensor Cores,” [EEE Trans.
Comput., vol. 72, no. 6, pp. 1733-1746, 1st Jun. 2023.
J. Finkelstein et al., ‘Quantum Perturbation Theory
Using Tensor Cores and a Deep Neural Network, J.
Chem. Theory Comput., vol. 18, no. 7, pp. 42554268,
2022.

J. Finkelstein et al., ‘Quantum-Based Molecular Dy-
namics Simulations Using Tensor Cores,” J. Chem.
Theory Comput., vol. 17, no. 10, pp. 6180-6192, 2021.
NVIDIA, NVIDIA VI00S datasheet, 2020.

NVIDIA, Nsight Compute, 2025.

NVIDIA, Efficient GEMM in CUDA: Parallelized Re-
ductions, 2025.

V. Nair and G. E. Hinton, ‘Rectified Linear Units
Improve Restricted Boltzmann Machines,” 2010.

J. Mockus, ‘The bayesian approach to local optimiza-
tion,” in Bayesian approach to global optimization:
Theory and applications, Springer, 1989, pp. 125-156.
Clang team. ‘Attributes in Clang: Clang documenta-
tion.

Clang team. ‘Code transformation metadata.’

F. Van Zee and R. Van De Geijn, ‘BLIS: A Framework
for Rapidly Instantiating BLAS Functionality, ACM
Trans. Math. Softw., vol. 41, no. 3, pp. 1-33, 2015.
NVIDIA. ‘CUDA templates for linear algebra subrou-
tines.’

NVIDIA. ‘CUTLASS example 51: Hopper GETT.
Google. ‘OpenXLA project.’

T. Chen et al., “TVM: An automated End-to-End op-
timizing compiler for deep learning,’ in Proc. OSDI,
USENIX, Oct. 2018, pp. 578-594.

C. Lattner et al., ‘MLIR: Scaling Compiler Infrastruc-
ture for Domain Specific Computation,” in Proc. CGO,
2021.

P. Tillet et al., “Triton: An intermediate language and
compiler for tiled neural network computations, in

(58]

[59]

(60]

[61]

Proc. Int’l Workshop on Machine Learning and Pro-
gramming Languages, 1029, pp. 10-19.

F. Kjolstad et al., ‘The tensor algebra compiler,” Proc.
ACM Program. Lang., vol. 1, no. OOPSLA, 77:1-77:29,
2017.

Z. Xia et al., ‘Detecting numerical deviations in deep
learning models introduced by the tvm compiler, in
Proc. ISSRE, 2024, pp. 73-83.

A. Abdelfattah et al., ‘High-performance Tensor Con-
tractions for GPUs,’ Procedia Computer Science,
vol. 80, pp. 108-118, 2016.

Y. Yu et al., ‘Tailoring CUTLASS GEMM using Su-
pervised Learning,” in International Conf. on Computer
Design (ICCD), 2023, pp. 465-474.

Thomas Faingnaert is a PhD student at Ghent Uni-
versity in the Computer Systems Lab. He obtained
his MSc degree in Computer Science Engineering
from Ghent University’s Faculty of Engineering and
Architecture in 2020. His research focuses on soft-
ware protection, and high-level abstractions for GPU
programming in Julia.

Ward Vermeulen currently works at TechWolf.
He obtained his MSc degree in Computer Science
Engineering from Ghent University’s Faculty of En-
gineering and Architecture in 2023. His master thesis
research project focused on high-level abstractions
for tensor contractions in Julia.

Tim Besard is a software engineer at JuliaHub. He
obtained his MSc in Computer Engineering from
University College Ghent in 2011, and his PhD in
Computer Science Engineering from Ghent Univer-
sity in 2019. He is currently the lead maintainer of
several GPU back-ends for the Julia programming
language.

Bjorn De Sutter is full professor at Ghent Uni-
versity in the Computer Systems Lab. He obtained
his MSc and PhD degrees in Computer Science
from Ghent University’s Faculty of Engineering in
1997 and 2002. His research focuses on the use of
compiler techniques to aid programmers with non-
functional aspects of their software, such as perfor-
mance and mitigation of various security threats.

	Introduction
	Background
	Tensors
	Tensor Contraction Algorithms
	GPGPU Programming
	Tensor Cores
	Julia Programming Language
	GemmKernels

	Flexible Tensor Contractions
	Requirements
	Components for Flexible Tensor Contractions in Julia
	Optimisations to GemmKernels
	Determining the Optimal GETT-Parameters
	Example usage

	Evaluation
	Measurements
	Overall Results per Architecture
	Detailed Performance Analysis
	Operator Fusion
	Random Sampling Efficiency
	Padding
	Holistic Performance Analysis

	Discussion
	Compiler Issues
	Underlying Reasons
	Consequences for Flexible Library Developers and Users

	Related Work
	Availability
	Conclusion and Future Work
	Biographies
	Thomas Faingnaert
	Ward Vermeulen
	Tim Besard
	Bjorn De Sutter

