
Tools and Models for Software Reverse Engineering Research
Thomas Faingnaert∗

Thomas.Faingnaert@UGent.be
Ghent University
Ghent, Belgium

Tab (Tianyi) Zhang∗
Tab.Zhang@UGent.be

Ghent University
Ghent, Belgium

Willem Van Iseghem
Willem.VanIseghem@UGent.be

Ghent University
Ghent, Belgium

Gertjan Everaert
Gertjan.Everaert@UGent.be

Ghent University
Ghent, Belgium

Bart Coppens
Bart.Coppens@UGent.be

Ghent University
Ghent, Belgium

Christian Collberg
collberg@cs.arizona.edu
The University of Arizona

Tucson, AZ, USA

Bjorn De Sutter
Bjorn.DeSutter@UGent.be

Ghent University
Ghent, Belgium

ABSTRACT
Software protection researchers often struggle with the evaluation
of MATE software protections and attacks. Evaluations often are
incomplete and not representative of the practice. This can in part
be explained by a lack of standardized, generally applicable models,
tools, and methodologies for evaluating how reverse engineering
attack strategies are executed. The framework of related compo-
nents proposed in this paper is an attempt to provide exactly that.
It includes a meta-model and supporting tools for modeling the
knowledge that reverse engineers acquire as they execute their
strategies, a meta-model to estimate the required effort of those
strategies, and tools to capture strategic activities from data streams
collected during human reverse engineering experiments. Their use
is demonstrated on three example reverse engineering strategies.

CCS CONCEPTS
• Security and privacy→ Software reverse engineering.

KEYWORDS
reverse engineering; strategy modeling, simulation, and capturing
ACM Reference Format:
Thomas Faingnaert, Tab (Tianyi) Zhang, Willem Van Iseghem, Gertjan
Everaert, Bart Coppens, Christian Collberg, and Bjorn De Sutter. 2024. Tools
and Models for Software Reverse Engineering Research. In Proceedings of
the 2024 ACM Workshop on Research on offensive and defensive techniques
in the context of Man At The End (MATE) attacks (Checkmate ’24), October
18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/TODO

∗Faingnaert and Zhang share dual first authorship.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Checkmate ’24, October 18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN TODO
https://doi.org/TODO

1 INTRODUCTION
A recently published survey on evaluation methodologies for obfus-
cated software identified major issues in that research domain [40].
The authors observed that few papers on the generation, deobfusca-
tion, and analysis of obfuscated software evaluate how obfuscations
resist real-world attack scenarios. They also observed little (re)use
of analysis and deobfuscation tools, in particular of state-of-the-art
tools and of the flexibility and extensibility such tools offer. They
also observed that few papers evaluate potency, resilience, and
stealth of software protections (SPs) being targeted by man-at-the-
end (MATE) attacks. Given how hard it is to use tools in the way
real-world attackers use them, these observations regarding impor-
tant threats to validity of research results do not surprise. To the
contrary, the survey confirmed the gut feeling of many participants
to the 2019 Dagstuhl Seminar on Software Protection Decision Sup-
port and Evaluation Methodologies [13] regarding the poor state of
evaluation methodologies in SP research. The survey authors then
formulated a call to arms for the development of a toolbox of easily
reusable software analysis tools with which real-world attacks can
be mimicked. In this paper, we present such a toolbox.

The survey authors also found that there exists no standard, gen-
eral evaluation methodology for SPs. Given the diverse objectives
that SPs can serve, including the wide range of attack strategies
they need to mitigate, the lack of a completely standardized eval-
uation methodology for all forms of MATE SP is understandable.
That should not imply, however, that we should abandon all effort
to standardize evaluation methodologies. Developing high-level
evaluation methodologies for certain classes of attack strategies, if
possible, could still enable more reuse of evaluation tools and make
research results more comparable, thus improving the productivity
of MATE SP researchers and helping them to mitigate threats to
validity. In this paper, we present a skeleton for such a methodology.

The research presented here is a response to that call to arms. To
help the SP research community overcome thementioned issues, we
decided to design and implement a framework for modeling reverse
engineering (REing) activities, with an initial focus on localiza-
tion and comprehension activities commonly used in MATE attack
strategies [7, 38]. Our framework consists of three components:

https://orcid.org/0000-0002-6420-6476
https://orcid.org/0009-0002-4734-6888
https://orcid.org/0009-0005-9454-9583
https://orcid.org/0000-0002-7628-9264
https://orcid.org/0000-0002-7628-9264
https://orcid.org/0000-0003-1301-7939
https://orcid.org/0000-0003-0317-2089
https://doi.org/TODO
https://doi.org/TODO

Checkmate ’24, October 18, 2024, Salt Lake City, UT, USA Faingnaert, Zhang, et al.

(1) Ameta-model of the knowledge obtained by reverse engineers
(REs) while executing their strategies, and tool support for
the instantiation of concrete models of that meta-model by
means of a broad range of existing, state-of-the-art REing
tools. This enables researchers to simulate real-world attacks.

(2) A meta-model of the effort required to execute those strate-
gies, and methods and tools to estimate that effort on con-
crete models. This enables researchers to estimate the effort
that real-world attackers might have to invest, and hence to
estimate the impact that SPs might have.

(3) Strategy capturing tools for (semi)automatically capturing
REing activities from recordings of humans tackling REing
challenges. This enables researchers to identify which nav-
igation methods REs use in search of artifacts, and which
artifacts they visit as they try to comprehend code. This
can help researchers validate the relevance and represen-
tativeness of the attack strategies and models used in their
research. It can also help them to identify new relevant attack
strategies they were previously unaware of, thus positioning
them to design, instantiate, and use more accurate models.

The contributions of this paper are threefold: (1) the presentation
of the framework and component designs; (2) their demonstration
on three example attacks: cryptographic key extraction, license key
check localization, and game cheat opportunity localization; (3) the
open-sourcing of all our proof-of-concept tool support.

Section 2 introduces the example attacks strategies. Section 3
presents the knowledge meta-model and tool support for instantiat-
ing concrete models, and demonstrates it on the examples. Section 4
discusses the effort meta-model and how it applies to the examples.
Section 5 discusses our tools for extracting code localization and
comprehension activities in human experiments, explaining their
capabilities on one of the examples. Section 6 discusses related
work, and Section 7 draws conclusions and looks forward.

2 EXAMPLE REVERSE ENGINEERING
STRATEGIES

Throughout this paper, we will rely on three example localization
strategies to illustrate the constructs, models, and methods of our
framework. In these strategies, REs rely on domain knowledge to
identify intermediate artifacts first, which lead them towards their
final goal. We call such intermediate and final artifacts mileposts.

2.1 Dynamic Cryptographic Key Extraction
Scenario. On some scenarios a program needs to encrypt or de-

crypt data with a (secret) key that is embedded or computed (e.g.,
with a key derivation function) in the program. A MATE adversary
can then try to extract the key from the program.

Strategy. This is a dynamic REing strategy: most information is
collected from execution traces, some is obtained with a debugger.
In fact, this attack strategy is an extension of, and improvement
over the K-Hunt strategy for automated key extraction [25].

Mileposts. This strategy involves four mileposts:

(a) Basic blocks likely performing crypto are identified in traces
based on their mix of operations, their execution counts

when crypto is enabled/disabled, how those counts scale
with varying input sizes, and their operands’ values’ entropy.

(b) Basic blocks likely loading/storing the data consumed/produced
in the crypto operations. These are identified by following
the data dependencies starting from the previous milepost.

(c) Operands of instructions in those basic blocks likely correspond-
ing to key operands. These are identified by taint-tracking
where the operands originate from, by their instruction types,
by the variations in their values within and over multiple
runs, as well as the likelihood of their values being non-key
values, and by the sizes of the buffers they refer to.

(d) Key operand values. These are identified by logging, at debug-
ger breakpoints, the values of the identified key operands in
the order in which they occur during the execution.

Defenses. This attack is not easily mitigated with obfuscations,
because the features exploited in the different steps to prune the
search spaces of the subsequent mileposts are so fundamental.
While some obfuscations (e.g., anti-taint protections, constant-time
transformations, code duplication) can hamper some of the prun-
ing/selection heuristics, an ablation study revealed that the attack
strategy is robust enough to tolerate the failure or lowered preci-
sion of a limited number of heuristics. In other words, mitigating
the attack requires combining multiple expensive SPs, resulting
in huge performance overheads, and even then the impact is still
minimal, in the sense that the number of candidate code fragments
found for each milepost only grows minimally.

2.2 License Key Checks Localization
Scenario. The second strategy targets naive implementations of

software license checkers that (i) take a license key as input; (ii) ex-
tract subkeys and optionally perform arithmetic on them at various
program points; (iii) perform checks on them at various program
points and update the state of the license checker to “failed” upon
checks failing; (iv) check that state at various program points and
react in case the state is “failed” by outputting an error message and
halting execution. To learn how to generate license keys themselves,
MATE adversaries can try to identify the performed checks.

Strategy. This is a mostly static strategy using capabilities of
interactive disassemblers such as IDA, Ghidra, and Binary Ninja.
As such, it nicely complements the previous strategy.

Mileposts. This strategy involves six mileposts:

(e) Error strings embedded in the program are identified by ex-
tracting all strings from the binary and filtering for the most
interesting ones. Potential options for this filtering are to
execute the program with invalid keys and observe the exact
error message, or to sort the strings, giving a higher weight
to words such as “invalid”, “activation”, “code”, “serial”, “key”,
“wrong”, “authorization”, “incorrect”, etc.

(f) Code referencing the error strings. To identify these fragments,
the RE relies on interactive disassemblers to list all instruc-
tions referencing a global data element such as a string.

(g) Reaction code fragments output the error strings. They can
be identified by browsing through the disassembled code,
following “links” in the form of data dependencies that the

Tools and Models for Software Reverse Engineering Research Checkmate ’24, October 18, 2024, Salt Lake City, UT, USA

disassemblers have extracted from the disassembled code or
that dynamic analysis have recorded in execution traces.

(h) Reaction triggers are conditional control transfers that de-
cide whether a reaction fragment gets executed. They can
be identified by browsing through the disassembled code,
following “links” in the form of control dependencies when
those are available from automatic analyses, or by browsing
manually through control flow graphs (CFGs).

(i) Subkey checks. These computations produce the trigger pred-
icates. They are found in their program slices, by following
data dependencies, or by browsing through the CFGs.

(j) Subkey extraction from key and computations. In a similar
manner, these computations that are performed on the in-
puts to the key checks can be identified. Indeed, subkey
checks and subkey extraction and computation code form
the backward program slice of the reaction triggers.

Defenses. This strategy is easily mitigated. To prevent the first
step, it suffices to replace the strings embedded in the program
binary with code that regenerates the strings on the fly, with a
so-called static-to-procedural conversion [27]. Dynamic analyses
are then needed to identify the third milepost. A complementary
defense is to insert decoys at various program points: code frag-
ments that resemble the true mileposts, and that seemingly relate
to each other and to the real mileposts in ways that make them
hard to differentiate from real mileposts. For example, fake subkey
checks can be sprinkled throughout the application that alter the
data that encodes the license manager state but that do not alter
the encoded state, fake references to error strings can be included,
intermediary computations can be inserted to complicate the data
dependencies between the various mileposts, etc. All of them will
result in more candidates being labeled as potential mileposts, and
hence more code fragments will have to be visited and studied by
the RE to differentiate real mileposts from decoys.

2.3 Game Resource Hack Localization
Scenario. With game resource hacks, cheaters wish to modify

the amount of resources (health, currency, ammunition, ...) of their
character in the game [6]. To achieve this, one can patch the code
fragments in the game that update the resources.

Strategy. This strategy to identify the resource’s location comple-
ments the previous two ones by building on a completely different
type of analysis technique, namely interactive memory scanning.

Mileposts. This strategy comprises two mileposts:

(k) Resource data location. Tools such as CheatEngine [8] or scan-
mem [37] can be used to identify the memory locations in
a running game’s address space that hold the resource data.
The cheater then plays the game up to some point, halts the
process, and scans its memory space for values correspond-
ing to their amount of resources as shown on screen. Such
a scan will typically yield multiple locations that store the
searched values. Most of them will happen to store the same
bytes by coincidence. To prune those, the attacker will play
some more, such that the relevant values change, and repeat
the scan, narrowing the search space to those locations now

IDA Pro module

Pin dynamic data
dependency module

Knowledge
Base

BLOB Store

Binary Ninja module

Pin call graph module

Debugger module Pin memory buffer
analysis module

Strategy Orchestrator

Figure 1: Overview of the REing KB, enrichment modules, a
strategy orchestrator, and a BLOB store.

containing the changed values. This narrowing can be re-
peated multiple times until only a single location remains.
The number of required iterations is typically not known a
priori and can actually vary from run to run.

(l) Resource hack location. After attaching a debugger to the
still running game and setting a watchpoint on the found
resource data location, the code fragments accessing and/or
updating that data can easily be found.

Defenses. Obfuscations can easily make the cheater require many
more memory scan iterations and more complex pattern recogni-
tion heuristics. For example, the game could store the resources
in non-standard number encodings by means of residue number
coding [14]. REs then initially do not know how displayed numbers
map onto stored ones, so they will need more complex heuristics
to identify and prune the locations that store the searched values.

While modern commercial games include anti-tamper protec-
tions to prevent in-place code patches, we still think this REing
strategy is relevant, if only because the first milepost is also relevant
for more advanced cheats, such as attacks aiming to build a pointer
chain, i.e., a sequence of fixed-offset dereferencing operations start-
ing at a static or stack root address, for use in out-of-process cheats.

3 REVERSE ENGINEERING KNOWLEDGE
META-MODEL

Our framework’s first component enables themodeling of all knowl-
edge that REs (and their tools) collect on their target programs and
exploit while conducting REing activities. Concretely, we want to
store that complex, structured information in a knowledge base
(KB) with which enrichment modules (EMs) can then interact to
extract and/or inject information. These EMs can do so by reason-
ing about the already collected information, but also by invoking
analysis tools from the RE’s toolbox, as shown in Figure 1. Strategy
orchestrators (SOs) control the invocation of EMs, mimicking REs
that invoke tools to collect knowledge as they execute strategies.

The KB then in effect stores a model of the attacker’s knowledge
on the targeted app. A meta-model (similarly to a grammar for a
programming language) describes the allowed structure of such
a model, formally defining its syntax and rules. In this section,
we propose such a meta-model, and we present a set of EMs to
instantiate concrete models and to interact with them.

3.1 Requirements
The knowledge that REs collect and on which they reason, spans
a wide range of concepts. This is already evident from the above

Checkmate ’24, October 18, 2024, Salt Lake City, UT, USA Faingnaert, Zhang, et al.

example attack strategies. Beyond those examples, various works
inspired us on how to model that knowledge. The survey from
Schrittwieser et al. on obfuscation vs. program analysis [38] pro-
vides an extensive overview of how different types of program
analysis, and hence different types of analysis results, are used by
REs to defeat obfuscations. The taxonomy of Ceccato et al. of REing
concepts is an additional important source of inspiration [7]. Cec-
cato et al. extracted REing concepts from reports by professional pen
testers and interviews with an amateur using systematic qualitative
analysis. This taxonomy includes 169 concepts and contains four
models of hacker activities which relate to (i) obtaining code com-
prehension, (ii) making and testing hypotheses and building and
executing attack strategies, (iii) choosing, customizing, and creating
new tools, and (iv) defeating SPs. The recent survey by De Sutter
et al. analyzes how SP publications deploy analysis techniques and
concrete tools to evaluate the strength of obfuscations [40]. Beyond
obfuscations, the practice of REing was studied in many papers
(e.g., [26, 39]), with which we are also familiar.

Our knowledge meta-model aims to cover all constructs and
models that are considered analysis results in those publications,
as well as the ones we know from our experience. We hence first
inferred some requirements and opportunities.

First, REs consider static artifacts at many levels of abstraction,
all of which are represented with graphs in the programming lan-
guage design and implementation domain, such as CFGs, abstract
syntax trees, intermediate representation trees, and call graphs.
Furthermore, software engineers as well as REs design and think
of programs as a hierarchy comprising libraries, functions, basic
blocks, and instructions. The composition of code artifacts is hence
naturally modeled as a tree. There are exceptions, however. For
example, the Binary Ninja disassembler can assign basic blocks to
multiple functions when they are reachable from multiple function
entry points through intra-procedural control transfer idioms [46].

Secondly, we identified four types of information that REs collect:

(1) Artifacts existing at various levels of abstraction: instructions,
buffers, pointers, data structures with certain shapes, etc. that
make up the static program or its dynamic state;

(2) Relations between artifacts, such as data and control flow de-
pendencies between code artifacts, which operations access
which data structures, etc.;

(3) Properties of artifacts and relations, such as their size, them
being tainted or not, statistical information about their oc-
currences in a program execution (e.g., a trace), etc.;

(4) Mappings between concrete and more abstract artifacts, such
as bytes forming a key, instructions forming a key check,
and shapes on the heap forming abstract data structures.

All of these results can easily be modeled with graphs: artifacts
at various levels of abstraction correspond to nodes, edges model
relations or mappings between the artifacts, and properties can be
modeled by labeling nodes and edges with them.

Third, the range of concrete types of artifacts, relations, proper-
ties, and mappings that need to be modeled is vast, and not limited
to a predetermined set. For example, REs do not stop at identifying
a generic “data structure in memory”. Instead, once they discover
that some data structure is a linked list, they will start to reason
about that data and the operations thereon at the algorithmic level.

They will label the artifacts as such, either in their mental model
or in their tools, e.g. by renaming symbols such as DAT_1234 in
a disassembled binary to linked_list0x1234 and the anonymous
function FUN_fedcba to linked_list_insert. For our meta-model
to cover all REing activities, it needs to support any concrete or
abstract, domain-specific or general-purpose, basic or expert-level
data structures and algorithms that REs might ever care about. In
short, the types of nodes, edges, and properties need to be flexible.

3.2 Design
The above leads us to use graphs to model the knowledge that REs
collect. The proposed meta-model hence defines what the graphs
that instantiate this meta-model can look like.

First, nodes have types, can be identified by their unique identifier,
and have a set of properties. Types, identifiers, and properties are not
limited to predetermined sets of names or values. Each property can
be a single value, but also a key-value store. This allows us to model
related properties, such as the execution counts of instructions
observed for different inputs. Similarly to nodes, (directed and
undirected) edges also have a type, an identifier, and properties,
none of which are limited to predetermined sets. The type of an
edge corresponds to the type of relation between their source and
sink nodes. Since nodes can be related in multiple ways, multiple
edges can connect a pair of nodes, resulting in multigraphs.

3.3 Implementation
3.3.1 Knowledge Base. We store the graph model collected on
a target app in a KB, we use a graph database (DB) [30] that is
optimized to store graph data and to query relations and patterns of
relations. Concretely, we use Neo4j [29]. In Neo4j, nodes and edges
have labels in which we can store their type. Furthermore, nodes
and edges in the DB have properties, which we can use to store the
properties of all artifacts on which a RE collects information. In our
current implementation, we implement key-value-store properties
by using the keys as prefixes or suffixes in property names.

3.3.2 Binary Large Objects. Some tools produce massive outputs
that are essentially arrays of bytes, such as execution traces and
memory dumps. DBs are not designed for storing massive arrays
internally. Instead, the best practice is to store them externally in
BLOBs or Binary Large OBjects, and to store URLs to them in the
DB. We follow that best practice, hence the BLOB store in Figure 1.
Also the program binaries themselves, and input files to them used
for dynamic analyses will be stored in the BLOB store.

3.3.3 Orchestrators and Enrichment Modules. We have opted for
Python for implementing these. Many REs are familiar with this
high-level language, and many REing tools provide a Python API.
One can use any method supported by Neo4j to populate the
KB with new data. The most performant method to import large
amounts of data in bulk is Neo4j’s built-in CSV importer.

3.3.4 KB Query Language. The standard way to interface with
a Neo4j DB is through its own SQL-like Cypher query language.
Cypher queries can be embedded in Python code as string literals,
but those are rather hard to read and verbose, and need to be
duplicated to be reused, which makes the use of Cypher in EMs and

Tools and Models for Software Reverse Engineering Research Checkmate ’24, October 18, 2024, Salt Lake City, UT, USA

1 Instruction(
2 writesTo(MemoryBuffer().bind("written_buf")),
3 readsFrom(MemoryBuffer().bind("read_buf"))
4).bind("ins")

Listing 1: Query combining node and traversal matchers.

1 Instruction(
2 dependsOn(
3 Instruction(
4 P("opcode") == "add"
5).bind("add_op")
6),
7 P("num_exec") == P("add_op", "num_exec")
8).bind("ins")

Listing 2: Query illustrating both forms of the P function.

SOs cumbersome. Moreover, embedding Cypher queries in them
would tie their code to a specific DB, which we want to avoid.

To alleviate these shortcomings, we designed our own query lan-
guage inspired by the AST Matchers framework of the Clang com-
piler that is commonly used for tools operating on source code [43].
We hence borrow terminology from this framework where appro-
priate. Unlike Cypher queries, which are embedded string literals,
our query language comes in the form of reusable Python code that
is automatically converted to a Cypher query under the hood.

Our query language design revolves around reusable Python
components called matchers that come in two types. Node matchers
match one type of node. Examples are the Instruction, BasicBlock,
and MemoryBuffer matchers. To create a node matcher, one simply
calls the appropriately named function in Python: for example,
Instruction() creates a node matcher for instructions. Traversal
matchers match one type of relation in the KB, thus allowing tra-
versal from one node to another. Each relation in the KB typically
has two associated traversal matchers: one for each direction, such
as a readsFrom traversal matcher (traversing from an Instruction

to a MemoryBuffer that it reads from) and an isReadFromBy traversal
matcher (traversing from a MemoryBuffer to an Instruction that
reads from it). Matchers also support the bind operation, which
gives a node or relation a name that can be used to refer to this node
or relation later. For example, Instruction().bind("ins") matches
instructions that can then be referred to by the name “ins”. A node
matcher can have zero or more traversal matchers as argument;
a traversal matcher has one node matcher as argument. As such,
node and traversal matchers can be combined arbitrarily to form
complex patterns. For example, the query in Listing 1 looks for
instructions that both read from and write to a buffer.

Node and traversal matchers can be narrowed with conditions
on the properties of the nodes/relations they should match. This
is done with built-in Python operators and the P function (short
for property), which has two forms: P("prop") refers to the prop-
erty prop of the node(s)/relation(s) matched by the encompassing
matcher, and P("name", "prop") refers to the property prop of the
node(s)/relation(s) bound to the name “name”. The query shown in
Listing 2 contains both forms to express that add_opmust be an add

instruction (Line 4) and that another instruction ins that depends

1 read_key_instruction_pattern = Instruction(
2 readsFrom(
3 MemoryBuffer(P("entropy") > 0.8).bind("key_buffer")
4)
5).bind("read_key_ins")
6
7 Instruction(
8 P("opcode") == "xor",
9 dependsOn(read_key_instruction_pattern),
10 dependsOn(
11 Instruction(
12 readsFrom(
13 MemoryBuffer(
14 P("entropy") < 0.2).bind("data_buffer")
15)
16).bind("read_data_ins")
17)
18)

Listing 3: A query illustrating increased reusability.

on it must be executed the same amount of times (Line 7).
Besides being more human readable and Neo4j-independent, our

language also makes it easier to reuse parts of a query, and to build
a reusable query library. This is because information pertaining to
the same artifact can be spread out over MATCH and WHERE clauses in
Cypher, whereas it is more localized in our language. For example,
the query in Listing 3 looks for artifacts in a crypto routine. It looks
for XOR instructions that depend on two instructions that read from
memory buffers: a buffer with high entropy containing the key, and
a buffer with low entropy containing the plaintext data. Reusing
the pattern for the instruction that reads from the key buffer is as
simple as assigning that expression to a variable (Lines 1–5), and
then using that variable in the query (Line 9).

3.3.5 KB Enrichment Modules. To demo our design and to promote
its use, we implemented several EMs. Most of them are scripts that
interact with the KB in an automatedmanner to enrich and populate
it with knowledge. Some EMs are interactive, however.

Intel Software Development Emulator. Intel SDE is an executable
instrumentation and emulation tool suite [22]. We use its instru-
mentation framework Pin for dynamic analyses implemented in
Pintools [23]. We developed several EMs to collect dynamic infor-
mation, such as data dependencies, call graphs, accessed memory
buffers, etc. These EMs first record a program’s execution in a Pin-
ball. A recorded execution can then be replayed multiple times
to run the actual Pintools. This offers the advantages of consis-
tency (determinism) over multiple analysis runs, reproducibility,
and improved tracing speed. The latter is important for tracing
time-dependent app behavior, such as real-time or network apps
that can time out. Note that the Pinballs and execution traces are
considered BLOB data. The KB is only populated with actual knowl-
edge in the form of data dependencies, call graphs, buffers with their
statistical properties, executed instructions with their execution
counts and which buffers they access, etc. For the example REing
attack strategies, the developed Pin EMs collect all the information
needed for reaching mileposts (a), (b), and (d) from Section 2, and
most of the information needed for reaching milepost (c).

Dynamic Taint Analysis & Generic Deobfuscation. Yadegari et al.
proposed a generic deobfuscator pipeline [50]. Forward and back-

Checkmate ’24, October 18, 2024, Salt Lake City, UT, USA Faingnaert, Zhang, et al.

ward taint analysis are first performed on traces [49] to identify the
executed instructions that are semantically relevant for producing
the program outputs. The trace filtered for these instructions is then
simplified based on whether or not the behavior of the instructions
is so-called quasi-invariant. From the simplified trace, a CFG is then
reconstructed. These pipeline stages produce results of interest to
REs. With our integration, they are stored in the KB, including the
executed instructions, their taint status, and whether their operands
are quasi-invariant. We can use this EM to identify those operands
that originate from data input files for milepost (c).

Debuggers. With debuggers such as GDB [16] and LLDB [44],
REs can execute a program to relevant points or activities, and
inspect their state. They can do so interactively or with automated
scripts. We created a template EM that can be instantiated to deploy
the LLDB debugger with such scripts. This is facilitated by LLDB’s
built-in Python interpreter. Our template provides wrappers for
the KB’s APIs, such that the debugger scripts can at once control
the debugger, and access and update the information in the KB.
We implemented two such EMs, namely for reaching the example
strategy mileposts (d) with breakpoints and (l) with watchpoints.

Disassemblers. Interactive disassemblers such as IDA [21], Binary
Ninja [47], and Ghidra [28] are among the most used REing tools.
They store their models of binaries in their own, custom DBs, which
we treat as BLOBs. They can be accessed via custom, vendor-specific
APIs, typically in Python. Importing the relevant information from
the disassembler’s DBs (call graphs, CFGs, cross-references between
code and data, ...) into the KB is hence a simple enrichment process.
We developed such an EM for mileposts (e)–(j).

Such disassemblers also offer plugin APIs for building custom
analyses. We can hence build custom analysis EMs that combine
information computed by the disassembler with information avail-
able in the KB. For example, we developed an EM to customize
Binary Ninja’s static Value Set Analysis (VSA) [2], on which the
tool builds to identify realizable paths in CFGs. When the KB stores
dynamic value sets previously obtained with a trace-based EM, this
EM can invoke Binary Ninja, filter the computed static value sets
(which are overapproximations) based on the dynamic sets, and
then let Binary Ninja’s own analyses refine the reconstructed CFGs
based on the filtered value sets. While this improvement of Binary
Ninja’s operation is an unsound process, it is not uncommon for
REs to simplify their mental model of a program based on properties
observed dynamically. With this type of EM, such hybrid, static-
dynamic knowledge gathering can be modeled easily. Appendix A
provides additional illustration of this type of integration.

Pattern Matchers. While our query language facilitates search-
ing in the KB, e.g., by matching patterns, we also designed EMs
around two existing pattern matchers. The open-source Yara [48]
helps malware researchers to identify and classify malware sam-
ples. Its users can define custom patterns (textual or binary) and
find matches in files’ contents. The open-source static analysis tool
Grap [34] applies pattern matching on the CFGs of a binary. It
uses the Capstone [11] disassembler to generate the CFGs that it
searches for user-defined patterns. The matched patterns are then
stored in the KB, where they can be linked to other data.

Scanmem. As an interactive EM, we implemented a wrapper
script around the Linux scanmem tool [37]. It attaches scanmem to
a running process; iteratively asks for values to search for in the
process’ address spaces, narrowing down the found locations in
each step; and then stores the found locations in the KB. This EM
can be used for milepost (k) of the example attack strategies.

Complexity Metrics. It is rather trivial to develop EMs that com-
pute complexity metrics on the KB data, such as Halstead sizes and
cyclomatic complexity code metrics [12], information flow met-
rics [19], etc. With a simple query, a subgraph can be extracted
from the KB, which can then be imported into a Python script using
the Python Object Graph Mapper of Neo4j, and then the script can
compute the metric on the imported graph. Alternatively, one can
program a small Java programwith a specially crafted Cypher query
to let Neo4j compute the complexity without having to serialize
and then deserialize the data to pass it to Python.

Distance Metrics. Neo4j readily offers the necessary functionality
to compute shortest distances between nodes in subgraphs of a
graph. This allows to compute the distance between mileposts in
the KB, and related information, such as the set of nodes that are
closer to some milepost than another milepost. In Section 4, we
will discuss how we propose to build on such metrics to model
and estimate localization attack effort. Importantly, Neo4j offers
the necessary functionality to first extract a subgraph, and then
compute distances within that subgraph. This allows an EM or SO
to compute distances assuming that certain forms of information
in the KB would not be available to an attacker.

3.3.6 Inspection Interfaces. Beyond using Neo4j’s web interface to
inspect the KB, several options exist to export the information in
user-friendly formats. First, Python scripts can be written (as sepa-
rate EMs or in SOs) that compute and output aggregate data, such as
statistics, selected pieces of knowledge (such as artifacts identified
in a localization attack), or any other form of report. Furthermore,
existing REing tools can be re-used to inspect information in the KB.
For example, we developed a Binary Ninja plug-in to export data
from the KB to Binary Ninja, and to augment the CFG visualization
in Binary Ninja. When an instruction is selected in a displayed CFG,
a dock lists the memory buffers accessed by that instruction when
such information is available in the KB, together with their prop-
erties such as address, size, and number of accesses. It also shows
the read/written values, with which VSA results can be refined as
discussed above. In the CFG itself, the data dependencies of the
selected instruction are highlighted as they occurred in collected
program traces. Appendix A illustrates this further.

3.4 Demonstration on Example Strategies
For each of our example REing strategies, we implemented SOs that
execute them by invoking and configuring the necessary EMs.

Cryptographic Keys. Two Python notebook SOs implement an
attack template for two target apps. This template involves more
than invoking REing tools sequentially. For milepost (a), the Pintool
EMs are invoked for a number of differently sized inputs, and the
results are stored in the KB. Based on that information, the SO then
first selects the basic blocks that most likely form milepost (a), and

Tools and Models for Software Reverse Engineering Research Checkmate ’24, October 18, 2024, Salt Lake City, UT, USA

then those that form milepost (b). Then it configures and invokes
more Pintool EMs to collect additional tracing information. This
can optionally include a whole-program trace as input to the taint
analysis EM. The trace then is a BLOB, but the taint results are
stored in the KB. It also includes fine-grained trace information on
the operations that form milepost (b), which is also added to the KB.
This requires customized Pintools, as collecting that information
on all code in the program would yield an unacceptable execution
slowdown. Instead, the Pintools are configured to only trace the
operations in milepost (b). Within those operations, and based on
the additional information, mileposts (c) are then determined, after
which a debugger EM is configured and launched to obtain the
final milepost (d). We validated that this can fully automatically
extract the AES keys used in 7-Zip [32] and in GnuPG [33] (both
compiled not to use Intel’s AES NI support, which would make key
extraction trivial).

License Key Check. Our SO implements a version of the general
attack strategy to target simple license check implementations. It is
simplified in the sense that (i) it only relies on static information, all
of which is imported into the KB by means of an IDA EM; (ii) it only
targets simplistic implementations of license checks, namely where
int key = atoi(argv[i]); extracts the key from the command-line
arguments, and somewhere at random program points, there are
checks of the form if (key!=0x1234) {printf("invalid key\n");

exit(-1);} in which all mileposts (f)–(j) are grouped together in
the binary, i.e., in two adjacent basic blocks, rather than spread out.

This SO takes as input a list of terms one expects to find in license
error messages. With the IDA EM, it collects the binary’s strings,
code references to those strings, and all CFGs. It then selects the
string(s) that best fit the provided terms as milepost (e), and reports
a list of basic blocks that refer to and feed them to functions such
as printf(), as well as their preceding blocks that implement the
key checks, assuming that these are the adjacent blocks holding
mileposts (f)–(j). The actual extraction of the program slice that
computes the check, either from the disassembled code, or from
decompiled code, is left for the RE in this case. In a tool such as
Ghidra, that offers built-in slice highlighting, this requires almost
no effort in case the check is as simple as assumed here.

Game Resource Hack. For this strategy, a simple SO deploys two
interactive EMs: a scanmem EM and a debugger EM. With the
former, one obtains the memory location(s) of milepost (k) by per-
forming actions in the running game intertwined with scanmem
rounds. The SO then automatically configures LLDB to set watch-
points on those memory locations (while the game is still running),
and to report all code fragments that access those locations.

4 REVERSE ENGINEERING EFFORT
META-MODEL

The primary goal of our effort meta-model is to enable estimating
the effort required to execute given REing strategies on given target
apps by simulating their execution. For each strategy and target
app, the meta-model will be instantiated into a concrete model,
which will be nothing more or less than an SO and a KB.

We build on several assumptions for this endeavor. For starters,
we consider REing strategies to involve four types of activities.

These types of activities overlap mostly with the analyst’s aims
and means considered by Schrittwieser et al. [38], and with the
activities in the taxonomy of Ceccato et al. [7].

(1) Collection. By creating, building, customizing, configuring,
and executing software analysis tools on their targets, REs ob-
tain the four kinds of information mentioned in Section 3.1.

(2) Localization.With tools, but not necessarily automatically,
attackers localize the artifacts (i.e., code or data) of interest.

(3) Comprehension. Attackers try to comprehend that informa-
tion, and learn certain concrete or abstract properties of
artifacts, such as invariants or summaries of semantics, as
well as relations, and which lower-level constructs map to
which higher-level concepts, by studying them manually.

(4) Strategy building. Based on the already obtained information,
attackers dynamically develop their strategy, i.e., decide on
the next activities to perform. These decisions include per-
forming manual tasks, invoking more data collection tools,
performing manual comprehension tasks, as well as formu-
lating hypotheses, testing them, and refuting them.

The first three of these activities can be modeled as enrichments
of the type of KB proposed in the previous section. This is obvious
for collection activities and for comprehension activities, the lat-
ter merely being the manual counterpart of automated software
analysis. Localization activities can be modeled as the ordering of
information in the KB. Their outcome is a list of candidate nodes
ordered by some priority function. These nodes can be nodes that
already existed in the KB, such as functions or basic blocks, but it
can also be newly created nodes that map (via the mappings dis-
cussed in Section 3.1) onto arbitrary types of subgraphs of the KB
graph. For example, each item in the list can be a newly created
“code region” node with a corresponding set of basic blocks. The
outcome of a localization activity can hence also be stored in the
KB, in the form of nodes, mappings, and properties, with the latter
storing the priority assigned to each node by the priority function.

This framing of localization might seem counter-intuitive. For
example, when a RE browses a function’s CFG in a disassembler’s
GUI to find some part of interest, studying the displayed basic blocks
is typically considered part of the localization effort. We consider
the studying of the basic blocks and the CFG comprehension tasks,
however, and limit localization to the process of prioritizing where
to look next. This allows for a cleaner partitioning of the different
types of activities to be modeled, and how to model them.

The strategy building activity can be modeled as a function that
takes as input the state of the KB and that outputs the next activity
to be executed, which will either be one of the first three activities
or the halt activity that halts the REing process. This activity will
be triggered either when an amount of effort has been invested at
which the RE is assumed to give up, or when all mileposts have
been discovered according to the information in the KB, i.e., when
the mappings in which the RE is interested, have all been found.

A whole REing process can then be modeled as an infinite loop:

while (true)
activity, subgraph = strategy(kb, effort)
k, e = execute(activity, subgraph, kb)
kb = k; effort += e

Checkmate ’24, October 18, 2024, Salt Lake City, UT, USA Faingnaert, Zhang, et al.

In this meta-model pseudo code, strategy is the strategy building
function. It returns the next activity to execute, such as some data
flow analysis, as well as the subgraph of the KB on which that step
will be executed, such as the function and its CFG. The function
execute simulates the next activity on the subgraph and returns an
updated KB and the effort required to execute the step.

Critically, both strategy and execute are probabilistic in nature,
as will be discussed in detail below. To estimate the expected effort
for a REing strategy, two options are then available: analytical
(statistical) analysis, and simulation. Here, we focus on the latter.
The main idea is to simulate the REing process many times, using
randomnumber generators where probabilistic processes take place,
thus obtaining a distribution of the required effort. Our proposed
simulation approach is to implement the above script in an SO. The
main challenge then is of course the scripting of the various possible
activities and how those simulate real REing activity executions.

Before we discuss that in detail, we need to point out that the
execution of activities can add additional information to the KB
beyond information about the target app. More specifically, the
execution of an activity can record information in the KB about the
REing process itself. Three examples of such useful information,
on which REs in practice rely to decide on their next activities, are
(i) the effort invested while executing an activity on a subgraph, (ii)
confidence estimations of obtained information, (iii) likelihood of
relevance. We come back to the use of these later in this section.

Furthermore, we assume that before starting a strategy simula-
tion, the KBwill have been populated with all relevant ground-truth
data. This builds on the assumption that the modeler has access to
that data, which in practice limits the use of our approach to devel-
opers wanting to model REing attacks on their own software or on
software that they were able to analyze sufficiently themselves, e.g.,
through source code access and assuming that the used build tools
produce sufficient logs, symbol information, debug information,
and other metadata. This is not trivial, but feasible [31].

Importantly, that ground-truth data initially added to the KB will
be labeled as “hidden”. In all models of activities that get simulated,
hidden information can be used to simulate them correctly, but it
cannot be considered available to the RE. For example, in an activity
visiting and inspecting a partially ordered set of artifacts to find
the relevant one, the model can consider the ground-truth position
of that one artifact to compute the expected number of visits, but it
should not assume that the RE uses this knowledge to optimize the
order of their visits.

4.1 Collection Activities
Tool Execution. Several options exist to model data collection

with automated tools. If the modeler has access to all tools the
target RE can potentially use, their execution can be simulated by
invoking corresponding EMs that add the tools’ relevant outputs to
the KB and report their execution time. If the RE can choose among
multiple comparable tools for a task (e.g., multiple disassemblers
can extract a call graph or all string references) and the modeler
has access to all of them, the EM can make a random selection.
Alternatively, the modeler can opt to use only one of them if it can
be considered representative for the comparable tools. This loosens
the requirement that a modeler needs access to all possible tools

and tool versions that the target RE might be using.
When the modeler lacks access to some tool and comparable

alternatives, another option is to rely on literature about the scal-
ability of the tool’s analyses and on ground-truth data about the
target binary. That data serves two purposes. First, rather than hav-
ing the EM populate the KB with information extracted with the
modeled tool, the EM can uncover the corresponding ground-truth
information that the tool was aiming to extract, by removing the
“hidden” label from that information in the KB. This overestimates
the capabilities of the RE and their tools, as this corresponds to
a worst-case scenario assumption that the RE’s tool can extract
the ground truth accurately. In practice, this is not the case due
to unsound analyses and heuristics being used that can result in
false positive and false negative results (e.g., [31]). Overestimating
the RE’s capabilities will result in underestimating the required
effort, so uncovering ground-truth data as an alternative will still
allow the modeler to obtain a lower bound on the expected effort.
Secondly, the ground-truth information can be used to obtain the
properties of the binary to which the analyses’ execution times are
sensitive, and thus to estimate the analysis tools’ execution times.

Tool Preparation. Custom tool development effort can be esti-
mated based on complexity aspects of their analysis, such as locality
(local, global, interprocedural, interthread, interprocess) and sen-
sitivity (flow, path, context, call-site, ...). It can also be neglected,
which comes down to the worst-case scenario assumption that
expert REs readily have the tools available. Similarly, the configu-
ration effort might be neglected, under the worst-case assumptions
that REs are highly productive experts with automated aids (e.g.,
scripts) for the configurations. For example, not to underestimate
one’s adversaries, it might be wise to assume that they have access
to the same SOs and EMs the modeler is using. Note that the stated
worst-case assumptions about the targeted RE’s capabilities and
expertise do not prevent the modeling of less capable adversaries,
such as script kiddies or amateur hackers. If certain tools or activi-
ties are too complex for the supposed adversary, as might be the
case for custom tool development, the modeler can simply model
strategies that exclude those tools and activities entirely.

4.2 Comprehension Activities
Obtained Information. We have already stated that we assume

comprehension activities to produce new information. Users of
interactive disassemblers do so quite literally, e.g., when they re-
name meaningless symbols such as DAT_0x1234 and FUN_0xdcba to
useful ones such as key_buffer and ht_insert. But also recognizing
properties, relations, or mappings can be outcomes of human com-
prehension activities that correspond to forms of information added
to the KB. The successful execution of a comprehension activity
can hence be simulated by injecting the obtained knowledge into
the KB. If this knowledge corresponds to hidden ground-truth data
already in the KB, it suffices to remove the “hidden” from it.

We note that one can model that a comprehension activity exe-
cuted on one subgraph probabilistically results in knowledge on
related fragments. For example, we have observed that REs navigate
to one code fragment in a disassembler GUI to study it, and then
observe that the actual fragment they are after is right above it. Our
models are flexible enough to model such serendipitous discoveries.

Tools and Models for Software Reverse Engineering Research Checkmate ’24, October 18, 2024, Salt Lake City, UT, USA

Required Effort. To model and simulate comprehension effort,
we propose to model the required time as a Gaussian distribution,
called the success distribution, of which the parameters 𝜇 and 𝜎2
are a function of the complexity of the subgraph being studied.
Remember that this subgraph is determined in the strategy building
activities, which will be discussed below in Section 4.4. We assume
that the subgraphs’ complexity (which can be a multi-dimensional
value, e.g., if the comprehension requires studying different aspects
such as CFGs as well as data dependencies) can be computed by
means of complexity metrics (as is commonly done in the field
of software engineering research), and then reduced to 𝜇 and 𝜎2.
Determining which metrics are best suited, and how to reduce them,
is out of scope of this paper, but inspiration can be found in many
places [12, 19, 26, 27]. More complex statistical distributions can
also be considered, but studying those is future work.

Partial and Iterative Comprehension. In practice, REs do not al-
ways complete comprehension activities successfully. After some
time, they can give up to try an alternative strategy, or change
priorities and shift their attention to other candidates, and poten-
tially revisit fragments again later. In short, REs take into account
how the process is going and has been progressing earlier on. It is
for enabling such considerations in the models that we previously
mentioned that the simulation of activities can also produce, and
record in the KB, outcomes such as the invested effort, confidence
estimations, and likelihood of relevance. These can be attached as
properties to the subgraphs on which an activity is executed.

Themodel of a comprehension task can then, e.g., be parametrized
by a stubbornness parameter that models how long the RE will per-
sist before giving up. This parameter might be a simple constant,
or a Gaussian distribution, that may be conditional on the informa-
tion in the KB. Every time the activity is executed, a sample taken
from that stubbornness distribution determines probabilistically
how long the RE will invest maximally in this execution. Then the
success distribution is sampled. Considering the time already spent
on the subgraph in previous executions of the same or similar ac-
tivities, the two samples determine whether the current execution
succeeds or fails, i.e., whether or not the aimed for information
is added or unhidden in the KB, and the invested (total) effort is
recorded in the KB as well. That recorded effort can then later be
used in the priority functions used in localization activity models,
e.g., to allow correct modeling of the fact that other, not yet visited
candidates will be visited before the same candidate is revisited.

Confidences or likelihoods produced in comprehension activities
can then also help later localization activities prioritize subgraphs
to be (re)visited. For example, in experiments with the license key
check, some REs visited all code fragments that access the stored
key. Assuming that the app might contain decoys, they first briefly
studied those fragments to determine which ones are likely true
checks and which ones are more likely decoys, after which they
revisited the former to perform more complex manual analysis.
The first visit can be modeled with an exploration comprehension
activity, in which the RE invests a fixed amount of time to record
a likelihood in the KB, while the second is a deep comprehension
activity that aims for ground-truth uncovering. How to compute
such likelihoods, and how to make other distributions dependent on
them, is out of the scope of this paper. It is highly activity-specific.

Our main claim here is that if the modeler is familiar with all the
constructs and relations that a RE will consider for decision making,
and how they will do so, it is possible to model those processes,
and to formalize them in executable EMs and/or SO scripts.

Note that determining likelihoods, confidences, and other con-
structs that can steer the strategy execution should not be limited
to comprehension tasks. While we discussed this aspect here, col-
lection tasks can obviously be used for that purpose as well.

4.3 Localization Activities
As explained in the introduction of Section 4, we consider localiza-
tion activities to be operations that assign priorities to subgraphs
in the KB, potentially creating those subgraphs on the fly. Those
priorities can then be taken into account by the strategy building
activities that will be discussed in the next section.

Our meta-model does not prescribe a specific type of priority
function for modeling such activities. In practice, a wide variety of
heuristics are used, and REs navigate through graph representations
of programs in various ways. The example strategies from Section 2
to identify likely mileposts based on all kinds of properties and
relations provide only a small sample of all possible fingerprints
and relations that REs rely on in practice. In general, if one can
formalize the heuristics and express them in a script, they can be
incorporated in our approach. There are some interesting cases and
aspects, however, which we wish to highlight.

First, it is up to the modeler to decide on the granularity of the
localization activity outcomes, i.e., which subgraphs are prioritized.
To model a RE browsing through code trying to identify the next
milepost starting from an already found one, the localization ac-
tivities might prioritize functions to visit, or basic blocks, or more
general code regions, etc. The modeler is free to choose this, as
long as the comprehension activities that then model all visits of
the browsing process handle corresponding types of subgraphs.

Secondly, it is possible for a localization activity to prioritize
subgraphs hierarchically, and to take those hierarchical priorities
into account inside comprehension activities, e.g., to model manual
browsing through graphs. For example, a localization activity can
prioritize and construct a single code region, and order the basic
blocks in that code region to model the likely order in which the
RE will browse them. Or it can prioritize one part of a program’s
call graph, and order the functions in it. This can be used, e.g., for
REing strategies in which the RE has identified a milepost function,
and goes searching for a related function in the call graph. The
RE can then browse blocks or functions randomly, but also with
some strategy. For example, Mantovani et al. studied depth-first,
breadth-first, and other code browsing strategies [26]. To implement
priority functions that correspond to such strategies, the distance
metrics and Neo4j’s capabilities to compute shortest distances in
Section 3.3.5 are particularly helpful. For example, it offers a trivial
way to compute how many nodes or functions will likely be visited
before the relevant one will be visited. Which the relevant one is, is
of course assumed to be available in the ground-truth information.

A modeler can choose whether to use hierarchical localization
and comprehension models. Determining which approaches work
best for which types of activities is future work.

Checkmate ’24, October 18, 2024, Salt Lake City, UT, USA Faingnaert, Zhang, et al.

Furthermore, we should point out that it is by no means nec-
essary for localization activities and the used priority functions
to produce and use total orderings. Any type of function will do,
even simple binary classifiers that partition the KB in relevant and
irrelevant parts are fine. The next section discusses how to handle
cases where multiple subgraphs are assigned the same priority.

Finally, with respect to the effort that localization activities re-
quire, we conjecture that their execution times can simply be mea-
sured or estimated, similarly to how the execution times of analysis
tools invoked for data collection can be measured or estimated.

4.4 Strategy Building - Decision Making
Themodel for strategy building is one big function that encapsulates
all the domain-specific knowledge that the RE will rely on during
the execution of the REing strategy. It scripts the whole strategy
from one milepost to another. The fact that mileposts have been
found is made visible in the KB because the relevant ground-truth
information will no longer be hidden. When all mileposts have been
uncovered, the halt activity gets invoked.

The strategy building function is probabilistic when the prior-
ity functions of localization activies are not guaranteed to return
unique priorities for each subgraph as input to the next activity.
When multiple subgraphs can be chosen with an equal top priority,
a random selection will be made in each simulation of this activity.

We assume the strategy building itself requires no effort, under
the assumption that the RE is experienced enough to decide on
the spot as soon as all the relevant information is available. In
other words, we assume that all time-consuming aspects of decision
making are modeled in the other types of activities that gather the
necessary information, including the prioritizations.

4.5 Demonstration on Example Strategies
Cryptographic Keys. The SOs introduced in Section 3.4 automat-

ically identify AES keys in our sample programs, so their required
effort can simply be measured. This revealed that almost all time
is spent collecting traces. We then performed an ablation study in
which we simulate attacks that skip the collection of certain forms
of trace information to check if saving on tracing time could be
worthwhile. Some prioritization heuristics then become unreliable
of course, which can prolong later attack steps (including the collec-
tion of detailed tracing info on selected code fragments). To avoid
this, an attacker might manually try to filter out irrelevant inter-
mediate mileposts. We modeled this by means of (i) a localization
activity for ordering candidates to be visited; (ii) a comprehension
activity for visiting them. We assume that each comprehension visit
correctly labels a candidate as relevant or irrelevant (as indicated
by ground-truth data), and that the effort required to do so depends
linearly on their Halstead difficulty [17].

The summary outcome is that, in case the attacker is assumed
to have enough resources to perform all tracing required for some
milepost concurrently, and in case manually filtering a block as
irrelevant requires at least a couple of seconds, which we deem a
realistic assumption even for assembly experts, using all trace infor-
mation except detailed taint tracking is the most efficient strategy.

License Key Checks. For modeling attacks on these, we consider
attackers that expect the program to contain decoys of the form

if (OP && subkey1!=0x654) {printf("invalid key");exit(-1);} in
which OP is an opaque predicate [10], i.e., a value that is computed
dynamically but always evaluates to false, such that the check
always “succeeds”. We extended the key check SO introduced in
Section 3.4 to model an attacker that visits each potential key check
to assess whether it is preceded by an OP that makes that key check
a decoy, assuming that the attacker relies on their experience to
recognize OPs. The effort required to do so is (in this simple model)
again assumed to depend linearly on the Halstead complexity of
the basic block in which the predicate is computed.

With this model, we can obtain distributions for the expected
effort of different strategies by simulating those on a target app
that contains various true subkey checks and various decoy sub-
key checks. These strategies can differ, e.g., in whether or not the
attacker continues checking until all of them have been visited, or
stops when the first true check has been identified.

This model and the license check implementations that it targets,
are of course of a contrived simplicity. In ongoing work, we are
modeling more complex strategies and more complex models (e.g.,
using more relevant complexity metrics) targeting more complex
license checks in which, e.g., the OPs can be spread throughout
the code, and the references to the strings from the code are also
moved around to create a larger distance between them and the
key checks, thus making the attack more difficult. In future work,
we plan to validate those models by comparing them with how our
Master Computer Science students attack those implementations
in labs of a course on SP and hacking.

Game Resource Hack. The scanmem and debugger EMs intro-
duced in Section 3.4 are both interactive and stochastic. They
require playing the game while performing analyses, and how
cheaters would play the game is obviously not deterministic. For
example, the points in time at which they would perform scans can
vary, and hence the outcome of that attack step can vary. In simple
strategies, on games in which the resource data is not obfuscated,
that outcome will likely not vary: the cheater finishes the scanmem
process when exactly one memory location has been identified,
and this will be a true positive for milepost (k). If the resource data
would be obfuscated, however, cheaters will use scanmem in a more
sophisticated manner, involving many more scans and more so-
phisticated heuristics to prune irrelevant memory locations, which
might end with a set of potentially relevant locations. Which false
positives this set includes will depend on which bytes in memory
accidentally happen to have the same value at the point of each scan.
The input to the debugger phase in the form of a set of memory
locations hence has to be modeled stochastically.

Obviously themodeler cannot be asked to play the game over and
over again for the repeated simulation of these processes. Instead,
we propose to have themodeler execute the game once and to collect
sufficient information during that one run to simulate multiple,
randomized runs. Just like the strategy, this one run would consist
of two phases of gameplay. In the first phase of that one game run,
we propose that the modeler takes a much larger set of memory
dumps than would normally be necessary for a cheater. This then
allows repeated randomized simulations of the scanmem attack
step by drawing random dumps from that set and performing the
scans on those dumps. The modeler then pauses their game play,

Tools and Models for Software Reverse Engineering Research Checkmate ’24, October 18, 2024, Salt Lake City, UT, USA

to first perform those randomized simulations of the scanmem step.
The result will be a set of sets of memory locations, i.e., one set
of locations for each simulation run. The union of these sets is
then injected into a debugger EM script for the second phase, in
which the modeler then continues playing the game while the script
collects candidates for milepost (l), i.e., code fragments that access
the potential resource data. The script does so by rotating through
the whole set of memory locations and setting watchpoints to them.
By rotating through them, information can be collected on more
than four watchpoints, which is the maximal number of hardware
watchpoints supported onmodern x86/IA64 architectures. This way,
in one run of the game, all the necessary information is collected
to simulate the debugger attack step repeatedly, i.e., once for every
scanmem simulation performed in the first phase.

4.6 Discussion
We consider our meta-model and simulation approach flexible and
expressive enough for modeling real-world REing strategies, but
complex to use. We consider this unavoidable, because REing pro-
cesses are complex and cover a wide range of constructs, models,
methods, and instantiations thereof. With this paper, we launch a
repository of SOs and EMs that can instantiate the meta-models
for our example REing strategies, for reuse in the SP and REing
research communities. It is our hope that the availability of this
repository will eventually lead to better evaluations in scientific
papers on these topics. If the repository grows in the future, incor-
porating more and more models of REing activities and strategies,
it should become easier and easier over time for researchers to
instantiate and use the relevant models for their evaluations.

5 REVERSE ENGINEERING STRATEGY
CAPTURING TOOLS

To use the effort meta-model from the previous section, the modeler
needs to know the REing attack strategy to model. Knowledge of
commonly used strategies can be obtained in various ways, includ-
ing from the scientific literature and reports from practitioners [7].
Tools have also been proposed to automatically collect which code
fragments are being visited at which times during the execution of
a REing assignment [26, 51], thus gaining insights into the order
in which REs visit code fragments. Such tools can help modelers
in gathering knowledge about attack strategies, but clearly they
do not capture all relevant information. Specifically, they do not
track how REs navigate from one fragment to another, i.e., which
relations they exploit that could be modeled in a KB and that should
be considered in an attack effort model. Furthermore, they do not
track which comprehension results the REs obtain. To fill these
gaps, this section proposes novel methods and tools to extract how
REs make use of code search navigation tools and relations between
artifacts, as well as how they gather comprehension results from
tool-neutral data collected with a generic data collection tool.

Our tools build on data collection tools such as RevEngE that
run in the background on the system on which the participating RE
executes his strategy [41, 42, 51]. The collected, time-stamped data
includes screenshots of sufficient quality to obtain accurate optical
character recognition (OCR) results, mouse clicks with coordinates,
key logs, active process information, and active window data.

As is the case in the most closely related research [26, 51], we
assume that the researcher wanting to extract strategic activities
from the collected data has access to ground-truth information
on the operation of the tools used by the participating RE. In our
research, we so far focused on extracting strategic activities in-
volving interactive disassemblers such as IDA Pro, Binary Ninja,
Ghidra, etc. After their initial analysis of a targeted app, these tools
choose names for artifacts found in the app, such as DAT_0x1324

and FUN_0xffca for global data and functions found at the indicated
addresses. Our assumption is that the researcher can extract these
symbols, as well as the whole internal (graph-like) representation
of the program from the disassembler’s custom DB, as discussed in
Section 3.3.5. The researcher (and the extraction tools we discuss
below) hence know which symbols to expect in screenshots and
which relations the tools know about that can be exploited by their
users to navigate or search in the binary.

5.1 Extracting Activities with Keyboard Inputs
Several localization and comprehension activities map directly onto
the use of features of the disassemblers that involve text input from
the RE. Appendix B presents some screenshots thereof. A Search
feature supports localization activities by allowing engineers to
find specific symbols or strings within the code and helping them
quickly localize relevant mileposts. The use of the Rename or Label
features can be seen as a method with which the RE persistently
stores information obtained through comprehension or localization
activities in the disassemblers DB, and hence marks the end of
such activities. A View References feature facilitates localization by
providing the REs with a list of all references to a symbol, thus
allowing them to trace the flow of data and/or control.

For extracting these types of activities from the collected data,
our tools combine 4 steps. First, using the OCR’ed screenshot data,
our tools determine which (sub)window is active, and with it which
navigation or search functionality of the disassembler is being used.
Secondly, the tool determines the time frame in which that window
is active, and hence receiving keyboard input. Thirdly, the keystroke
data from within that time frame is retrieved. Fourthly, if relevant,
the tool determines on which artifact or symbol the window was
opened. For example, for a renaming activity, the tool determines
which symbol is being renamed. Two options are available for this.
The first option is to extract the symbol from the active window
using OCR. We found this option to be unreliable, because OCR
often does not perform well on such symbols due to the way they
are being displayed with, e.g., little contrast. The alternative option
is to determine which symbol was being clicked to open the window.
The implementation of that option is discussed in the next section.

These steps suffice to report time-stamped activities such as
“searched for string invalid” or “renamed bVar8 to keycheck.”

5.2 Extracting Mouse Click Activities
Navigation through displayed artifacts and opening windows to
perform activities is often done with mouse clicks in interactive
disassemblers. Sometimes single or double clicking suffices to navi-
gate directly to another artifact, sometimes it opens a pop-up menu
from which an item is selected with another click.

To identify which symbol or menu item is being clicked, our tools

Checkmate ’24, October 18, 2024, Salt Lake City, UT, USA Faingnaert, Zhang, et al.

use the mouse info, including the coordinates of the click, as well
as the OCR’ed screenshots. More specifically, OCR tools such as
Tesseract can produce hOCR files, which are standardized XHTML
files describing, among others, the bounding boxes in the images
of the retrieved text fragments. With the click coordinates, the
relevant bounding box is determined, and hence the text displayed
in it. If that text contains more than one clickable symbol or menu
item, the relative position of the click within the bounding box is
used to select the most likely clicked symbol or item, respectively.

Existing work has already shown that tools can also determine
which functions or basic blocks are shown on screen in tools such
as IDA Pro and Ghidra [51]. We build on such tools to determine the
context in which an identified symbol is being clicked. This forms
the source of the navigation activity. The target of the activity is
the artifact denoted by the symbol itself.

Several options exist to determine which type of relationship
between source and target artifacts is being used for direct naviga-
tion. Disassemblers typically encode that information in the text
colors, and/or in suffixes or prefixes of the symbols. For example,
cross-references are drawn in green in Ghidra’s Listing window,
and followed by (W), (R), or (*) to denote read, write, or pointer
references. These “clues” can be extracted from the screenshots,
and they provide sufficient information: if they would not do so,
their meaning would not be obvious to the RE using the tool either.

Together, the contexts before, between, and after the clicking, the
clicked symbols andmenu items, and the extra clues suffice to detect
and report time-stamped activities such as “navigated from data
DAT_00288bb4 to function FUN_001bed20 using (R) cross-reference.”

5.3 Demonstration on License Checks
The following sample output demonstrates the information capture
by one of our tools:
14:37:48, Symbol: FUN_0010ed40, double click
14:37:48, Entered Function: FUN_0010ed40
14:38:09 - 14:37:57: Feature: Rename Function, Word: main
14:39:52, Symbol: DAT_00288bb, single click
14:39:54 - 14:40:02: Feature: Edit Label, Word: keyplus0x1000
14:40:10, Symbol: keyplus0x1000, single click
14:40:13, Symbol: Find References to keyplusOxl000, single click
14:40:15 - 14:40:18: Feature: References to
14:40:26 Entered Function: FUN_001A3A20
14:40:26, Symbol: bVar8, single click
14:40:28 - 14:40:29: Rename local variable, Word: license key

Each entry is a timestamped activity, such as mouse clicks,
keystrokes, and context information. In this snippet, several steps il-
lustrate the key localization technique used by the RE. At 14:37:48,
a double click on FUN_0010ed40 indicates the engineer entered this
function, followed by renaming it to main. The RE interacts with the
symbol DAT_00288bb at 14:39:52, renaming it to key_plus0x1000,
indicating a process of identifying and labeling a critical symbol for
their strategy. At 14:40:13, the RE uses a "Find References" feature
to locate occurrences of keyplus_0x1000. This step is crucial for
understanding how and where this key is used within the code. Fi-
nally, the engineer enters FUN_001A3A20 at 14:40:26 and renames
the local variable bVar8 to license key, when the license key was
finally found. These snippets of extracted information can easily be
assembled, using pattern matching, into activity reports like those

reported at the end of the Sections 5.1 and 5.2. This then shows the
strategy taken by the RE to localize a milepost.

6 RELATEDWORK
Several REing “frameworks” and tools have been proposed in the
past, all of which aim to facilitate R&D into REing and binary analy-
sis techniques, including disassembly, decompilation, and static and
dynamic analysis techniques, by means of a flexible, effective, and
extensible design that often involves lifting binary code to one or
more custom IRs. Examples are commercial offerings such as Binary
Ninja [47], IDA Pro [21] and Hex-Rays decompiler [20], as well as
open-source ones such as Ghidra [28], angr [39], Capstone [11],
Jakstab [24], Radare2 [35], Rizin [36], Amoco [45], Miasm [15], BIN-
SEC [3], BARF [18], and BAP [4]. Among these, angr has been put
forward as a unifying framework for REing. In practice, however,
this has not resulted in unification or standardisation of REing
research, as observed by De Sutter et al. [40]. In practice and in sci-
entific literature, many different tools and frameworks keep being
used. Combined with the fact that they are most often not com-
patible, each having their own focus, strengths, and weaknesses,
this makes it hard to study (human) REing, to measure the effect
of SPs on REing tasks, to compare the added value of scientific
contributions over existing work, etc.

Our framework, models, and tool support do not aim to re-
place the listed tools. They instead aim for creating an environ-
ment/toolbox/methodology in which they can easily be combined—
in the way practitioning REs combine a myriad of tools—and used
for estimating the effort required to execute given REing strategies
on given apps, and to compare the required efforts for different
strategies, or on differently protected app versions.

Earlier attempts at creating such toolboxes have had a limited
scope, such as Argon [1] that only combines one SP tool, Tigress [9],
with two analysis tools, KLEE [5] and angr [39].

Our tools to capture strategic REing activities build on the exist-
ing RevEngE [41, 42] and reAnalyst [51] tools to collect data from
the systems on which REs execute their strategies, to visualize that
data, and to annotate it manually or through automated extraction
of information from the collected data streams. The tools proposed
here extend the types of activities and annotations that can be ex-
tracted automatically. Compared to ReMind [26], another tool to
study how REs approach their tasks, our tools offer the advantage
of being tool-neutral. They work for IDA Pro, Ghidra, etc. instead
of being tied to a self-developed disassembler mockup like ReMind.

7 CONCLUSIONS AND FUTUREWORK
We presented a meta-model to structure and store all information
that REs collect about their target. We also presented a meta-model
of which instantiated models can be simulated to estimate the
effort that REing strategies require on given targets. Finally, we
presented methods to extract strategic activities from data streams
collected during human REing experiments. In support of these
models, we presented and open-sourced a range of tools support.
We demonstrated their use on three example REing attacks.

All of ourmodels and tools are available at https://github.com/csl-
ugent/TREX and https://github.com/csl-ugent/reAnalyst.

Our aim is that these repositories of models and tools will grow

https://github.com/csl-ugent/TREX
https://github.com/csl-ugent/TREX
https://github.com/csl-ugent/reAnalyst

Tools and Models for Software Reverse Engineering Research Checkmate ’24, October 18, 2024, Salt Lake City, UT, USA

in the future, thus making it easier and easier for researchers in
MATE SP to evaluate how SPs impact attacks in an acceptable, stan-
dardized, reproducible manner. We certainly plan to keep adding
models and tools in support of our own future evaluations of SPs
and attacks thereon.

ACKNOWLEDGMENTS
This work was supported in part by National Science Foundation
grant 2040206, by the Cybersecurity Research Program Flanders,
and by Research Foundation - Flanders (FWO) grants 3G0E2318
and 11I1123N. Waldo Verstraete helped us with the game use case.

REFERENCES
[1] Deepak Adhikari, J. Todd McDonald, Todd R. Andel, and Joseph D. Richardson.

2022. Argon: A Toolbase for Evaluating Software Protection Techniques Against
Symbolic Execution Attacks. In Proc. SoutheastCon 2022 (Mobile, AL, USA). IEEE,
743–750. https://doi.org/10.1109/SoutheastCon48659.2022.9764028

[2] Gogul Balakrishnan, Radu Gruian, Thomas Reps, and Tim Teitelbaum. 2005.
CodeSurfer/x86—A Platform for Analyzing x86 Executables. In Compiler Con-
struction. 250–254.

[3] binsec 2024. https://binsec.github.io/.
[4] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz. 2011.

BAP: A Binary Analysis Platform. In Computer Aided Verification. 463–469.
[5] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and

Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In Proc. 8th USENIX Symposium on Operating Systems Design and Implemen-
tationOSDI. 209–224. http://www.usenix.org/events/osdi08/tech/full_papers/
cadar/cadar.pdf

[6] Nick Cano. 2016. Game hacking: developing autonomous bots for online games.
No Starch Press.

[7] M. Ceccato et al. 2019. Understanding the behaviour of hackers while performing
attack tasks in a professional setting and in a public challenge. Empirical Software
Engineering 24, 1 (2019), 240–286. https://doi.org/10.1007/s10664-018-9625-6

[8] Cheat Engine 2024. Cheat Engine. https://www.cheatengine.org/.
[9] Christian Collberg. 2024. The Tigress C Obfuscator. https://tigress.wtf/.
[10] Christian Collberg, Clark Thomborson, and Douglas Low. 1998. Manufacturing

Cheap, Resilient, and Stealthy Opaque Constructs. In Proceedings of the 25th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San
Diego, California, USA) (POPL ’98). Association for Computing Machinery, New
York, NY, USA, 184–196. https://doi.org/10.1145/268946.268962

[11] COSEINC. 2024. capstone: The Ultimate Disassembly Framework. https:
//www.capstone-engine.org.

[12] B. Curtis, S.B. Sheppard, P. Milliman, M.A. Borst, and T. Love. 1979. Measuring
the Psychological Complexity of Software Maintenance Tasks with the Halstead
and McCabe Metrics. IEEE Transactions on Software Engineering SE-5, 2 (1979),
96–104. https://doi.org/10.1109/TSE.1979.234165

[13] Bjorn De Sutter, Christian Collberg, Mila Dalla Preda, and Brecht Wyseur. 2019.
Software Protection Decision Support and Evaluation Methodologies (Dagstuhl
Seminar 19331). Dagstuhl Reports 9, 8 (2019), 1–25. https://doi.org/10.4230/
DagRep.9.8.1

[14] Biniam Fisseha Demissie, Mariano Ceccato, and Roberto Tiella. 2015. Assess-
ment of data obfuscation with residue number coding. In 2015 IEEE/ACM 1st
International Workshop on Software Protection. IEEE, 38–44.

[15] Fabrice Desclaux. 2012. Miasm: Framework de reverse engineering. Actes du
SSTIC. SSTIC (2012). https://github.com/cea-sec/miasm.

[16] Free Software Foundation. 2024. GDB: The GNU Project Debugger. https:
//www.sourceware.org/gdb.

[17] Maurice H Halstead. 1977. Elements of Software Science (Operating and program-
ming systems series). Elsevier Science Inc.

[18] Christian Heitman and Iván Arce. 2014. BARF: a multiplatform open source
binary analysis and reverse engineering framework. In XX Congreso Argentino de
Ciencias de la Computación (Buenos Aires, 2014). https://github.com/programa-
stic/barf-project.

[19] Sallie Henry and Dennis Kafura. 1981. Software structure metrics based on
information flow. IEEE transactions on Software Engineering 5 (1981), 510–518.

[20] Hex-Rays. 2024. Hex-Rays Decompiler. https://hex-rays.com/decompiler/.
[21] Hex-Rays. 2024. IDA Pro: A powerful disassembler and a versatile debugger.

https://hex-rays.com/ida-pro.
[22] Intel Corporation. 2024. Intel Software Development Emulator (Intel

SDE). https://www.intel.com/content/www/us/en/developer/articles/tool/
software-development-emulator.html.

[23] Intel Corporation. 2024. Pin - A Dynamic Binary Instrumentation
Tool. https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-

dynamic-binary-instrumentation-tool.html.
[24] Johannes Kinder and Helmut Veith. 2008. Jakstab: A Static Analysis Platform for

Binaries. In Computer Aided Verification. 423–427.
[25] Juanru Li, Zhiqiang Lin, Juan Caballero, Yuanyuan Zhang, and Dawu Gu. 2018.

K-Hunt: Pinpointing Insecure Cryptographic Keys from Execution Traces. In
Proc. 2018 ACM SIGSAC Conference on Computer and Communications Security
(2018-10-15). 412–425. https://doi.org/10.1145/3243734.3243783

[26] Alessandro Mantovani, Simone Aonzo, Yanick Fratantonio, and Davide Balzarotti.
2022. RE-Mind: a First Look Inside the Mind of a Reverse Engineer. In 31st
USENIX Security Symposium. 2727–2745. https://www.usenix.org/conference/
usenixsecurity22/presentation/mantovani

[27] Jasvir Nagra and Christian Collberg. 2009. Surreptitious Software: Obfuscation,
Watermarking, and Tamperproofing for Software Protection: Obfuscation, Water-
marking, and Tamperproofing for Software Protection. Pearson Education.

[28] National Security Agency. 2024. Ghidra. https://ghidra-sre.org.
[29] Neo4j, Inc. 2024. Neo4j Graph Data Platform. https://neo4j.com.
[30] Neo4j, Inc. 2024. What is a Graph Database? https://neo4j.com/developer/graph-

database.
[31] Chengbin Pang, Tiantai Zhang, Ruotong Yu, Bing Mao, and Jun Xu. 2022. Ground

truth for binary disassembly is not easy. In 31st USENIX Security Symposium
(USENIX Security 22). 2479–2495.

[32] Igor Pavlov. 2024. 7-Zip. https://www.7-zip.org.
[33] The GnuPG Project. 2024. The GNU Privacy Guard. https://gnupg.org.
[34] QuoSec GmbH. 2024. grap: Define and match graph patterns within binaries.

https://github.com/QuoSecGmbH/grap.
[35] Radare Developers. 2024. radare: Libre and Portable Reverse Engineering Frame-

work. https://rada.re/n/radare2.html.
[36] rizin 2024. rizin - Free and Open Source Reverse Engineering Framework. https:

//rizin.re/.
[37] scanmem 2024. Scanmem. https://github.com/scanmem/scanmem.
[38] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merz-

dovnik, and Edgar Weippl. 2016. Protecting Software through Obfuscation: Can
It Keep Pace with Progress in Code Analysis? ACM Comput. Surv. 49, 1, Article 4
(apr 2016), 37 pages. https://doi.org/10.1145/2886012

[39] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. In IEEE Symposium on Security and Privacy.

[40] Bjorn De Sutter, Sebastian Schrittwieser, Bart Coppens, and Patrick
Kochberger. 2024. Evaluation Methodologies in Software Protection Re-
search. arXiv:2307.07300 [cs.CR]

[41] C. Taylor. 2022. Remotely Observing Reverse Engineers to Evaluate Software
Protection. Ph. D. Dissertation. The University of Arizona.

[42] C. Taylor and C. Collberg. 2019. Getting revenge: A system for analyzing reverse
engineering behavior. In Proc. Malware Conference.

[43] The Clang Team. 2024. Matching the Clang AST. https://clang.llvm.org/docs/
LibASTMatchers.html.

[44] The LLDB Team. 2024. The LLDB Debugger. https://lldb.llvm.org.
[45] Axel Tillequin. 2024. https://github.com/bdcht/amoco.
[46] Jens Van den Broeck, Bart Coppens, and Bjorn De Sutter. 2021. Obfuscated

integration of software protections. International Journal of Information Security
20, 73–101 (02 2021). https://doi.org/10.1007/s10207-020-00494-8

[47] Vector 35. 2024. Binary Ninja. https://binary.ninja/.
[48] VirusTotal. 2024. YARA. https://github.com/VirusTotal/yara.
[49] Babak Yadegari and Saumya Debray. 2014. Bit-Level Taint Analysis. In 2014 IEEE

14th International Working Conference on Source Code Analysis and Manipulation
(Victoria, BC, Canada, 2014-09). IEEE, 255–264. https://doi.org/10.1109/SCAM.
2014.43

[50] Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya Debray. 2015. A
Generic Approach to Automatic Deobfuscation of Executable Code. In 2015 IEEE
Symposium on Security and Privacy. 674–691. https://doi.org/10.1109/SP.2015.47

[51] Tab Zhang, Claire Taylor, Bart Coppens, Waleed Mebane, Christian Collberg,
and Bjorn De Sutter. 2024. reAnalyst: Scalable Analysis of Reverse Engineering
Activities. arXiv:2406.04427

A INSPECTING KB DATA IN BINARY NINJA
Sections 3.3.5 and 3.3.6 discussed briefly how information stored
in the KB can be used and inspected in Binary Ninja. Here we
elaborate on and illustrate that.

Figure 2 shows a screenshot of Binary Ninja with our integra-
tion plugin installed. The dock 1 on the top right lists the memory
buffers accessed by the currently selected instruction, and their
properties such as address, size, and number of reads/writes. The

https://doi.org/10.1109/SoutheastCon48659.2022.9764028
https://binsec.github.io/
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1007/s10664-018-9625-6
https://www.cheatengine.org/
https://tigress.wtf/
https://doi.org/10.1145/268946.268962
https://www.capstone-engine.org
https://www.capstone-engine.org
https://doi.org/10.1109/TSE.1979.234165
https://doi.org/10.4230/DagRep.9.8.1
https://doi.org/10.4230/DagRep.9.8.1
https://github.com/cea-sec/miasm
https://www.sourceware.org/gdb
https://www.sourceware.org/gdb
https://github.com/programa-stic/barf-project
https://github.com/programa-stic/barf-project
https://hex-rays.com/decompiler/
https://hex-rays.com/ida-pro
https://www.intel.com/content/www/us/en/developer/articles/tool/software-development-emulator.html
https://www.intel.com/content/www/us/en/developer/articles/tool/software-development-emulator.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://doi.org/10.1145/3243734.3243783
https://www.usenix.org/conference/usenixsecurity22/presentation/mantovani
https://www.usenix.org/conference/usenixsecurity22/presentation/mantovani
https://ghidra-sre.org
https://neo4j.com
https://neo4j.com/developer/graph-database
https://neo4j.com/developer/graph-database
https://www.7-zip.org
https://gnupg.org
https://github.com/QuoSecGmbH/grap
https://rada.re/n/radare2.html
https://rizin.re/
https://rizin.re/
https://github.com/scanmem/scanmem
https://doi.org/10.1145/2886012
https://arxiv.org/abs/2307.07300
https://clang.llvm.org/docs/LibASTMatchers.html
https://clang.llvm.org/docs/LibASTMatchers.html
https://lldb.llvm.org
https://github.com/bdcht/amoco
https://doi.org/10.1007/s10207-020-00494-8
https://binary.ninja/
https://github.com/VirusTotal/yara
https://doi.org/10.1109/SCAM.2014.43
https://doi.org/10.1109/SCAM.2014.43
https://doi.org/10.1109/SP.2015.47
https://arxiv.org/abs/2406.04427

Checkmate ’24, October 18, 2024, Salt Lake City, UT, USA Faingnaert, Zhang, et al.

1

2

3

Figure 2: Screenshot of Binary Ninja illustrating how dynamic analysis results from the KB that were collected with Pintools
can be integrated into this static REing tool and presented to the user.

4 5no VSA after VSA

Figure 3: Screenshots of Binary Ninja illustrating how dynamically obtained data can be used to “optimize” the standard
program representation in the form of Binary Ninja’s high-level intermediate language (HLIL).

Tools and Models for Software Reverse Engineering Research Checkmate ’24, October 18, 2024, Salt Lake City, UT, USA

dock 2 at the bottom right lists the read/written values of the
currently selected instruction. In the assembly CFG 3 on the left,
the dependencies of the currently selected instruction are repre-
sented by a red highlight, and the values read by the instructions
are shown as comments. It is also possible to show the DDG of the
entire function (not shown in the figure).

In the example CFG, the jump je .skip_move jumps to one of
two basic blocks, depending on whether the read value is zero or
non-zero. Since Binary Ninja initially had no information on this
value, both directions are shown as possible paths in the assembler
CFG as well as in the high-level intermediate language (HLIL) rep-
resentation of the code (4) on the left of Figure 3. This is the HLIL
CFG before we asked Binary Ninja to update its computed value
sets with the dynamically obtained data from the KB.

However, according to that dynamic data, the currently selected
instruction mov rdx, qword [rsi+rax] only reads zero values. When
we import that information into Binary Ninja using the dedicated
menu optionwe added through its customization APIs, Binary Ninja
recomputes its value sets, discovers that one of the paths becomes
unrealizable, makes it disappear from the constructed and shown
CFG, and removes code that has now become dead (i.e., operations
underlined in red in 4 , resulting in the optimized HLIL CFG 5 on
the right of Figure 3. In our opinion, this CFG matches the mental
model of the code that a RE would have built by combining their
static and dynamic information. Note that in the assembler CFG,
Binary Ninja only shows the original, unoptimized assembly code.
That is a limitation of Binary Ninja. However, the {0x1} after je
.skip_move does indicate that Binary Ninja has deduced that this
conditional branch will always be taken. So while the result of the
code optimization is not visible, the result of the updated VSA is.

B NAVIGATION, SEARCHING, AND
RENAMING IN DISASSEMBLERS

Figure 4 a–c show some example screenshots of search and naviga-
tion functionality in the Ghidra interactive disassembler/decompiler.
It is the use of these types of functionalities that the tools discussed
in Section 5 can extract from data collected during REing experi-
ments with human REs. Similarly, Figure 4 d–e shows some example
screenshots of functionality to give (new) names to artifacts in dis-
assembled and decompiled code. These new names are a form of
comprehension results, and the renaming activities indicate that the
users assume they have obtained useful knowledge. Also the use of
these functionalities can be extracted as discussed in Section 5.

Checkmate ’24, October 18, 2024, Salt Lake City, UT, USA Faingnaert, Zhang, et al.

a) text search window

c) search window for cross-references to selected data symbol

b) disassembler listing with clickable cross-references from code to data

d) renaming a local variable in decompiled code

e) renaming a global variable

Figure 4: Screenshots of Ghidra functionality for searching, navigating, labeling, and renaming symbols.

	Abstract
	1 Introduction
	2 Example Reverse Engineering Strategies
	2.1 Dynamic Cryptographic Key Extraction
	2.2 License Key Checks Localization
	2.3 Game Resource Hack Localization

	3 Reverse Engineering Knowledge Meta-Model
	3.1 Requirements
	3.2 Design
	3.3 Implementation
	3.4 Demonstration on Example Strategies

	4 Reverse Engineering Effort Meta-Model
	4.1 Collection Activities
	4.2 Comprehension Activities
	4.3 Localization Activities
	4.4 Strategy Building - Decision Making
	4.5 Demonstration on Example Strategies
	4.6 Discussion

	5 Reverse Engineering Strategy Capturing Tools
	5.1 Extracting Activities with Keyboard Inputs
	5.2 Extracting Mouse Click Activities
	5.3 Demonstration on License Checks

	6 Related Work
	7 Conclusions and Future Work
	Acknowledgments
	References
	A Inspecting KB data in Binary Ninja
	B Navigation, Searching, and Renaming in Disassemblers

