
K-Hunt++: Improved Dynamic Cryptographic Key Extraction
(Short Paper)

Thomas Faingnaert
Thomas.Faingnaert@UGent.be

Ghent University
Ghent, Belgium

Willem Van Iseghem
willem.vaniseghem@ugent.be

Ghent University
Ghent, Belgium

Bjorn De Sutter
Bjorn.DeSutter@UGent.be

Ghent University
Ghent, Belgium

ABSTRACT
We identified several weaknesses in the state-of-the-art crypto-
graphic key extraction algorithm, K-Hunt. It cannot handle code
in which key loading and use are spread apart, has problems with
modes such as AES CBC that use small data buffers of constant size,
and with complex apps in which functionality handles both the key
and data. K-Hunt++ overcomes those weaknesses. We demonstrate
it on two apps that trigger them and present an ablation study and
qualitative analysis of its robustness in the face of obfuscation.

CCS CONCEPTS
• Security and privacy→ Software reverse engineering;Crypt-
analysis and other attacks.

KEYWORDS
Dynamic binary code analysis, cryptographic key identification

ACM Reference Format:
Thomas Faingnaert, Willem Van Iseghem, and Bjorn De Sutter. 2024. K-
Hunt++: Improved Dynamic Cryptographic Key Extraction (Short Paper). In
Proceedings of the 2024 ACMWorkshop on Research on offensive and defensive
techniques in the context of Man At The End (MATE) attacks (Checkmate ’24),
October 18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/TODO

1 INTRODUCTION
Cryptographic keys play a crucial role in ensuring privacy and
confidentiality. The use of hardcoded private keys is considered a
bad practice that introduces significant security risks [9, 17]. Best
practices recommend the use of secure key management solutions,
where keys can be dynamically generated and securely stored,
rather than embedding them in code. Dynamic key usage can also
be insecure, however, when the keys are generated deterministically,
insecurely negotiated, or recoverable in other ways [19].

Quite some research has been invested in automated analyses
to identify cryptographic primitives in apps, and to extract static
and dynamic keys. These techniques are not only used for security
analysis, but also in man-at-the-end attacks that aim for reverse

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Checkmate ’24, October 18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN TODO
https://doi.org/TODO

engineering software or tampering with it to make unauthorized
use of it. Software obfuscations aim to mitigate such attacks [24].

Static analyses to localize crypto primitives and keys have been
based on pattern matching of data flow [18, 22] and control flow [5].
Library detection tools such as F.L.I.R.T. [13] can also be used to
detect crypto library functionality linked statically into an app.

Dynamic analyses have also built on various forms of data flow
analysis and tracking [7, 11, 31]. Instruction mix properties and
loop properties have been used [14], as well as a-priori knowledge
about implementations and features of cryptographic functionality,
such as the used data structures [29], and the avalanche effect [20].

K-Hunt [19] is a system for identifying insecure key usage in
binary executables. It includes a state-of-the-art dynamic key ex-
traction technique. As it does not rely on signatures to identify
crypto operations, it can target unknown and proprietary crypto al-
gorithms. K-Hunt was demonstrated to locate the keys in symmetric
ciphers, asymmetric ciphers, stream ciphers, and digital signatures,
both in standardized algorithms and in proprietary ones. Based on
that localization, K-Hunt discovered insecure keys in 22 out of 25
evaluated programs including several well-known crypto libraries.

No complete implementation of K-Hunt is available however:
while the K-Hunt paper does reference a GitHub repository, that
repository does not contain the fully implemented version of the
tool described in the paper. The authors confirmed to us that this
was intentional, as K-Hunt had since been acquired by a company,
which precluded them from publishing the full source code.

When we tried to reimplement K-Hunt as part of our research
into the modeling of reverse engineering strategies, we stumbled on
some shortcomings of the approach: namely that it cannot handle
code in which key loading and key use are spread apart, that some
of its heuristics fail for certain encryption/decryption modes such
as AES CBC, in which the result of each encryption operation
is a small buffer of constant size, and that it can fail on complex
applications in which functionality is reused in both the key and
the data handling, with the complementary heuristics not being
robust enough to overcome cheap countermeasures.

Section 2 presents and evaluates K-Hunt++, an extension of K-
Hunt that overcomes its shortcomings, on two programs. Section 3
presents an ablation study of K-Hunt++’s heuristics, before a dis-
cussion on the robustness of K-Hunt++ in the face of software
obfuscations in Section 4. Section 5 draws conclusions.

2 K-HUNT++
2.1 Design
K-Hunt++ extracts cryptographic keys from applications in four
stages as shown in Figure 1. Each stage aims to identify a milepost:
three intermediate mileposts, and a final milepost that consists of

https://orcid.org/0000-0002-6420-6476
https://orcid.org/0009-0005-9454-9583
https://orcid.org/0000-0003-0317-2089
https://doi.org/TODO
https://doi.org/TODO

Checkmate ’24, October 18, 2024, Salt Lake City, UT, USA Thomas Faingnaert, Willem Van Iseghem, and Bjorn De Sutter

dynamic fingerprints:
a) instruction mix
b) execution count scaling
c) functionality coverage
d) randomness data

dynamic fingerprints:
e) data source
f) buffer size
g) constant keys
h) quasi constant keys
i) likely key values
j) instruction types

milepost 1: crypto blocks milepost 2: key loading blocks milepost 3: key operands

dynamic
data

dependencies

debugger
breakpoints

milepost 4: key values

Figure 1: Four stage K-Hunt++ pipeline to identify four mileposts. Concepts that originate from K-Hunt are in italic [19].

the ultimate target, namely the cryptographic keys being used in
the program. All techniques and heuristics in K-Hunt++ that were
inspired by K-Hunt are indicated in an italic font in the figure. Like
K-Hunt, K-Hunt++ is a fully automated, dynamic approach. Its first
three pipeline stages analyzemultiple executions on different inputs.
For extracting the dynamic information, instrumentation tools such
as Intel’s Pin [15, 21] can be used, as well as simulators such as
QEMU [4]. We used Pin. The fourth stage relies on a debugger
script or instrumentation to extract keys from an actual program
execution. All stages are implemented in Python notebooks.

2.1.1 Milepost 1: crypto basic blocks. In stage one, K-Hunt++ uses a
set of heuristics to identify the set of basic blocks that likely perform
crypto operations. These heuristics come down to fingerprints
that, when combined, discriminate basic blocks performing crypto
operations from other blocks. The four fingerprints are:

(a) Caballero heuristic: crypto basic blocks have a high ratio of
arithmetic, bitwise logic, or AES instructions [6].

(b) Linear scaling of execution count: the number of executions
of crypto basic blocks scales linearly with input size.

(c) Functionality coverage: if the target application allows for
disabling the cryptography, or for changing the used cipher,
we use coverage information in multiple runs with different
ciphers enabled/disabled to prune the search space.

(d) High randomness: the data consumed or produced by the
instructions in the crypto basic blocks have high entropy.

All of these heuristics were already included in K-Hunt [19].
They target fundamental properties of cryptographic primitives:
when encryption, decryption, or signing primitives are invoked,
XORs or similar operations are executed to handle an amount of
data that scales with the size of the input plaintext or ciphertext. It
are these computations that this stages identifies, as their operands
are the keys and subkeys we aim to extract.

We implemented (a) with a Pintool that partitions the stream of
executed instructions into basic blocks using Pin’s heuristics. The
tool computes the ratio of targeted to other instructions in each
block, and then labels blocks as relevant or irrelevant based on a
threshold value. For (b) and (c) a second Pintool collects execution
counts of all executed basic blocks for multiple runs on varying
input sizes and with the targeted cryptographic functionality en-
abled/disabled. For (d) yet another Pintool collects the sequence of
values being loaded by each of the memory access instructions and
computes the Shannon entropy of that set per instruction. This Pin-
tool also tracks how many different memory locations are accessed
by each instruction in the program, thus measuring the sizes of the
buffers that are accessed by those instructions. This information
will be used in a later stage of the pipeline.

For each identified basic block, we perform a linear regression
analysis on the block’s execution counts using 𝑟2 as a metric of
linearity of the execution count as a function of the program in-
put length. Our metric also takes into account the slope of the
line of best fit to filter out blocks which are executed a constant
number of times. We experimented with two selection algorithms:
the first excludes all basic blocks that fail on any of the criteria,
using thresholds for the entropy and 𝑟2. The second computes a
weighted average of the entropy, 𝑟2, and the two binary values of
the Caballero heuristic and the coverage analysis, on the basis of
which it sorts all blocks from most to least likely crypto. We used
the latter for all experiments reported later in this paper.

2.1.2 Milepost 2: key loading blocks. To identify the keys used in
the blocks of milepost 1, fingerprints will again be used, as will
be discussed in the next section. Some fingerprints concern not
the computational operations such as the XORs, but the memory
buffers from which their operands are read. Those fingerprints are
expensive to collect, i.e., the amount of data to collect and the pro-
cessing thereof during the tracing introduces huge slowdowns. To
minimize that slowdown, the required data should only be collected
for the relevant buffer accesses, not for all memory accesses in the
whole program. In other words, we want to limit further fingerprint
collection through tracing to only the operations that read data
that is actually used in the already identified basic blocks.

Those read operations do not necessarily need to be part of the
basic blocks identified as crypto basic blocks in stage 1, however.
For example, a key might be read into a register before a loop, and
then used within the loop. The goal of this stage is to identify the
basic blocks that potentially load the used keys.

We hence identify the dynamic data dependencies to the blocks
identified in stage 1, by observing which operations those blocks
depend on during the tracing, i.e., of which they consume data. The
set of blocks from stage 1 is then expanded with the blocks at the
sources of these data dependencies. For this, we again rely on a
Pintool. This expansion was missing from the original K-Hunt.

2.1.3 Milepost 3: key operands. Within the blocks identified so far,
stage 3 aims to discriminate the instructions reading (sub)keys from
those reading input data. At the same time, this stage identifies
which operands of those instructions hold the (sub)keys.

The stage relies on a set of complementary heuristics to identify
the instructions reading from memory buffers and to differentiate
between instructions likely loading plaintext or ciphertext data on
the one hand and those loading keys on the other hand:

(e) Data source: a key is typically initialized by a key deriva-
tion function or from a random number generator, whereas
the ciphertext or plaintext input typically originates from a
specific file or network socket.

K-Hunt++: Improved Dynamic Cryptographic Key Extraction (Short Paper) Checkmate ’24, October 18, 2024, Salt Lake City, UT, USA

(f) Buffer size: key buffers are typically narrower than data input
buffers. Moreover, key buffer sizes are typically constant,
independent of the input data. Here, buffer size refers to the
number of unique addresses that an instruction accesses.
This heuristic is not always applicable, however. In AES
CBC encryption, e.g., the 𝑖th encryption input plaintext𝑖 ⊕
ciphertext𝑖−1 is stored in a small buffer of constant size.

(g) Constant keys: Hardcoded keys do not vary over different
runs, while chosen plaintexts or ciphertexts do. When vary-
ing passwords are used, however, derived keys will vary.

(h) Quasi constant keys: keys do not vary within one run, unlike
the blocks of text being encrypted or decrypted.

(i) Likely keys values: keys are likely not small constants that
have (many) 0-bytes at the most significant position, valid
memory addresses, or standardized constants (e.g., S-Boxes).

(j) Instruction types: key buffers are accessed less likely by con-
trol flow instructions, compares, and pops.

Heuristics (e) and (f) are reused from K-Hunt [19], the remaining
ones are novel: no such fingerprints or heuristics are discussed or
mentioned in the K-Hunt paper [19].

For (e) we implemented two approaches. In a first approach,
we rely on a taint tracking tool that we derived from the work by
Yadegari et al. [32, 33]. Specifically, we extended the original taint
tracker implementation such that it can be configured to taint data
that enters the program through specific system calls, such as open
that is used to open input data files, and read that is then used to
read their data. Importantly, Yadegari’s offline taint tracking tool, as
well as our adaptation, operates on detailed trace files that include
a list of all executed instructions as well as all of their operands,
which can easily be produced with a Pin tool.

Producing such files is not feasible for long running processes,
however, as the files grow too big and their processing becomes
impractically slow. While all of the mentioned fingerprints and
heuristics can be obtained on relatively small inputs, and hence
short running cryptographic operations, the code preceding the
cryptographic operations might run much longer. An important
case for us is key stretching in key derivation functions such as
Password-Based Key Derivation Function 2 (PBKDF2) [16]. Key
stretching is the iterative, recursive hashing of a password to derive
a key in a time-consuming way, i.e., with very large iteration counts.
It is deployed to slow down brute-force attacks and dictionary-
based attacks, e.g., on encrypted disks or other information stores
protected (and encrypted) with passwords. If key stretching cannot
be disabled or shortened through a configuration option, this can
impede the collection of full, detailed traces.

The authors of K-Hunt also observed that fine-grained taint
tracking incurs high performance overheads. They hence provided
an alternative, in the form of coarse-grained, function-level dy-
namic taint tracking [19]. In essence, their analysis labels functions
as tainted by local inputs (from opened files), by remote inputs
(obtained through sockets), or both or none of those two. During
the execution of the program, functions get the taint labels if they
consume data from those taint sources, or if they consume data pro-
duced by tainted functions. While this function-level taint analysis
proved to work on the applications on which K-Hunt was origi-
nally evaluated, we think it is rather trivial to break this analysis. It

(a) traditional dependencies (b) shortcut dependencies

S

L

P1

L S

PnP2 ... P1 PnP2 ...

C1 CnC2 ... C1 CnC2 ...

Figure 2: The data dependencies in an example program.
Shaded nodes represent memory operations in memcpy().

suffices to insert invocations of memcpy()-like functions on buffers
propagating keys and on buffers propagating input data at the ap-
propriate points to make the analysis consider both buffers, and
hence the operations loading keys, as tainted by the data source.

We hence developed an alternative approach that is not as vul-
nerable, and that is still efficient because it relies solely on dynamic
data dependencies, which already need to be tracked for milepost 2
anyway. In our approach, we build a data dependency graph (DDG)
that incorporates all dependencies observed in a tracing run. In this
DDG, we then simply compute the distances from the system call
through which the input data enters the program to the operations
that load key or input data from key or data buffers in the crypto
and key loading blocks. The operations with the shortest distance
to the system calls are assumed to be loading from data buffers, the
others (which typically have distance infinity, as there is no path
connecting the system calls and those loads in the DDG) are then
considered as loading from key buffers.

This approach can only work, however, if the data dependencies
are tracked accurately. In practice, many data-copying operations,
such as those in memcpy(), have high fan-in or fan-out in dynamic
DDGs. In a DDG that incorporates all direct dependencies that
occurred in a full execution, this can obscure the relevant relations
between computational producers (or system calls producing data)
on the one hand and their consumers on the other hand. For exam-
ple, Figure 2(a) shows a conventional DDG of a program containing
𝑛 producer-consumer pairs. In this program, all data propagates
from producers to their consumers via a single load and a single
store operation in (a simplified) memcpy() that is invoked at 𝑛 call
sites. When those load and store operations are handled like any
other operation, the resulting DDG of Figure 2(a) does not reveal
that each Ci only depends on its corresponding Pi. Instead, it mixes
all of them up. This would make our approach fail, just like the
insertion of memcpy() operations would make the function-level
taint tracking of K-Hunt fail.

In our Pintool that collects data dependencies, we solve this by
tracking so-called shortcut dependencies: for each value stored
in any location in the program state, our tool also tracks the last
instruction that actually produced that value with arithmetic, logic,
or any other kind of computations, or in a system call. The depen-
dencies of the resulting DDG of Figure 2(b) are then added to the
DDG on top of the conventional dependencies, and distances are
computed using the shortcut dependencies.

Finally, for heuristics (f–i) we again rely on simple Pintools, and
(j) is implemented directly in our Python notebook. Features (e) to
(j) are then used in a priority function that ranks the instructions
and their operands in the identified basic blocks.

Checkmate ’24, October 18, 2024, Salt Lake City, UT, USA Thomas Faingnaert, Willem Van Iseghem, and Bjorn De Sutter

2.1.4 Milepost 4: key values. Finally, we use the LLDB [30] debug-
ger’s scripting capabilities to insert breakpoints on the instructions
that got prioritized on top in the previous stage, and to print the
values of the relevant memory operands of those instructions in
an execution of the program. When an encryption algorithm uses
subkeys derived from the main key, these breakpoints will be trig-
gered in the order in which the subkeys are used in the program.
The subkeys will hence be reported in the order in which they are
used, which eases the reconstruction of the main key.

Alternatively, the subkeys can be obtained with tracing. The
Pintools collecting values for heuristics (g–i) then need to adapted
to record also in which order different values are loaded.

2.2 Evaluation
We evaluated K-Hunt++ on two benchmark applications: 7-Zip [25],
a file archiver which also supports file encryption, and the GNU
Privacy Guard (GPG) [27], a libre implementation of the OpenPGP
standard for private and authenticated data communication.

As stage 3 ranks instructions according to their likelihood of
loading keys, we report the rank of the relevant instructions.

2.2.1 7-Zip. We compiled p7zip 16.02 in Linux, with the default
compilation options from the project’s makefile.linux_amd64.
We did not use makefile.linux_amd64_asm to avoid Intel’s AES-
NI instructions, which would make localization too easy.

7-Zip uses 219 iterations of SHA256 key stretching to derive the
cryptographic key from the user-provided password, which pre-
vents the use of Yadegari’s fine-grained taint-analysis for heuristic
(e). Moreover, 7-Zip uses AES256 encryption in a CBC scheme, in
which intermediate data are stored in a small buffer whose size
does not vary for different input sizes. This impacts heuristic (f).

In the inner loop of the AES encryption routine, the roundkeys
are read cooperatively by a set of 16 instructions:

(1) Four instructions, each reading 4 bytes of the initial roundkey
(2) Four instructions, each reading 4 bytes of the even-numbered

roundkeys (round 2, 4, 6, 8, 10, 12, and 14) in each execution
(3) Four instructions, each reading 4 bytes of the odd-numbered

roundkeys (round 3, 5, 7, 9, 11, 13) in each execution
(4) Four instructions, each reading 4 bytes of the final roundkey

As not all these instructions are executed the same number of
times, the part of the priority computed in the third pipeline stage
that takes into account the values read by instructions (i.e., (g)–
(i)), differs. To ensure this does not lead to wildly different overall
priorities, we calculate these components of the priority function
separately and cap them at a threshold. This threshold is determined
with K-means clustering with 2 clusters on the natural logarithm of
the priority, and taking the midpoint between the 2 cluster centers.

The result is that these 16 relevant instructions are ranked with
the same top priority by K-Hunt++. We manually verified that stage
4 correctly reported the AES roundkeys when breakpoints are set
at the instructions with top priority.

2.2.2 GPG. We used the gpg binary of the latest LTS versions of
GPG and its dependent libraries: GPG 2.2.29, libassuan 2.5.5, libksba
1.6.0, libgcrypt 1.8.8, libgpgerror 1.42, nPth 1.6, bzip2 1.0.8, and zlib
1.2.11. We used the default compilation options for all of them, with
the exception of disabling AES-NI support for libgcrypt.

1881688

6856
2 104

7ZIP

stage 1 Pin stage 2 Pin stage 3 Pin
stage 1 Python stage 2 Python stage 3 Python

739
54

77
40

1 175 GPG

stage 1 Pin stage 2 Pin stage 3 Pin
stage 1 Python stage 2 Python stage 3 Python

2410308

68

186 396

1

7ZIP

stage 1 Pin stage 2 Pin stage 3 Pin
stage 1 Python stage 2 Python stage 3 Python

Figure 3: Execution times (seconds) pie charts for stages 1–3.

GPG uses a variable number of iterations of SHA1 key stretching
in its key-derivation function string-to-key (S2K). With a command-
line option, we fix the number of iterations to 1025. Also worth
mentioning is that, by default, S2K uses salting, which results in a
different encryption key in every program execution, thus voiding
heuristic (g). Moreover, in the binarywe observed that the key buffer
reads happen in a different basic block than the actual cryptographic
computation. Stage 2 of our pipeline correctly identifies that block.

We used the default AES256 in a CFB scheme, i.e., the 𝑖th input
of the AES encryption routine is ciphertext𝑖−1. Additionally, for
integrity verification of the encrypted message, GPG computes
a Modification Detection Code (MDC), which is a SHA1-hash of
the plaintext data. This has the interesting side effect that SHA1
is executed on both data inputs and key inputs. The code used
to generate the keys is hence tainted by the data, which impacts
heuristic (e). This implies that a context-sensitive, fine-grained taint-
analysis needs to be used, or additional information such as the
distance in the DDG as discussed in Section 2.1.3.

In this program, there is another reason for requiring either fine-
grained taint information or DDG distance information. The GPG
binary includes a number of self-checks that invoke memcmp() on
input/output-related data as well as on key-related data. memcmp()
performs computations on data rather than simply moving them
around such as memcpy(), so the shortcut dependencies discussed
in Section 2.1.3 do not provide the required context-sensitivity.
Using distance in the DDG proved to be a sufficient alternative.

In the inner loop of the AES encryption routine, the roundkeys
are read cooperatively into XMM registers by 3 instructions:

(1) One that reads the 16-byte initial roundkey
(2) One that reads the 16-byte roundkey for the 13middle rounds,

one in each execution
(3) One that reads the 16-byte roundkey for the final round

As for 7-Zip, these are not executed the same number of times,
leading to differences in priority for the heuristics (g)–(i). We thus
again apply the K-means clustering for these components of the
priority function. K-Hunt++ then marks these 3 instructions with
the same top priority, with all other instructions getting a strictly
lower priority. We manually verified that stage 4 correctly reported
the AES roundkeys when breakpoints are set for the 3 instructions.

2.2.3 Efficiency. Figure 3 shows the execution times the first 3
stages (stage 4 is negligible). All heuristics are used in this experi-
ment. For heuristic (e), only our DDG-based analysis is used, as that
sufficed, not the fine-grained taint-tracking derived from Yadegari
et al. Unlike K-Hunt, of which the implementation is claimed to be
completely online [19], our implementation is hybrid offline/online:

K-Hunt++: Improved Dynamic Cryptographic Key Extraction (Short Paper) Checkmate ’24, October 18, 2024, Salt Lake City, UT, USA

first a Pinball is generated [15], which is an efficient record on
which to replay the multiple Pintools that collect actual data. Our
Pintools output the relevant data rather than traces, and that data
is stored in a graph database (DB). The times in Figure 3 are split
over instrumentation and tracing activities (Pinball generation and
Pintool execution) shown in blue on the one hand and data analysis
(Python code including queries on data stored in the graph DB)
shown in orange on the other hand. All times were measured on an
Intel(R) Core(TM) i7-10700 CPU running at 2.90GHz. The tracing
activities clearly dominate the overall execution time.

While K-Hunt’s authors claim their fully online approach is more
efficient than other key extraction techniques, they also rely on Pin
for heuristics (a)–(f). They do not report execution times, but on the
basis of their use of Pin, and tracing times dominating K-Hunt++,
we conjecture that K-Hunt’s times will be of the same order of
magnitude (tens of minutes) as K-Hunt++’s.

2.3 Comparison with K-Hunt
On GPG, K-Hunt would fail completely because it lacks KHunt++’s
stage 2 that finds key-loading instructions outside the blocks that
contain the crypto computations. Moreover, we have a strong sus-
picion that K-Hunt’s course-grained taint analysis in support of
heuristic (e) will also fail even if a stage 2 would have been added,
due to the complexity of the GPG binary, in particular its use of
multiple functions on both input-related data and key-related data.
Not having the code of K-Hunt, we cannot validate this.

On 7-Zip, with its AES CBC mode, heuristic (f) fails. This il-
lustrates that (e) and (f) can easily fail, even without obfuscations
being deployed. As K-Hunt has no fallback heuristics such as (g)–(j),
we have to conclude that K-Hunt is very brittle. This observation
might at first sight contradict the results its authors reported on
10 libraries and 15 binaries [19]. Those binaries did not include
GPG, however, and while their libraries do include libgcrypt on
which GPG relies, K-Hunt was only evaluated on three binaries
that each wrapped a single cryptographic primitive from libgcrypt,
thus not featuring the complex interplay with SHA1 and self-tests
of GPG. In short, K-Hunt was not tested on applications of the level
of complexity of the main binary of GPG.

K-Hunt++, by including its stage 2 and by relying on more, better,
and complementary heuristics in stage 3, is clearly less brittle.

3 ABLATION STUDY
We studied all 24 − 1 = 15 combinations of heuristics (a) – (d) for
stage 1, and all 26 = 64 combinations of heuristics (e) – (j) for stage
3. Detailed numeric results are listed in Appendix A. Here we focus
on the main qualitative outcomes. For the ablation study of stage 1,
we enabled all heuristics in stage 3, and vice versa.

3.1 Stage 1
On a relatively simple app such as 7-Zip, omitting one, two, or even
three of the four heuristics (a)–(d) does not negatively impact the
end results, i.e., the extracted keys. The combined stage 3 heuristics
(e)–(j) are so good that, when they are all deployed, they still rank
the 16 relevant instructions exclusively at the highest priority, thus
enabling correct key extraction with perfect recall and precision.
When multiple stage 1 heuristics are omitted, the number of basic

blocks identified as potential mileposts 1 and 2 can grow rapidly,
however, resulting in many more blocks being instrumented for
stage 3, which significantly slows down that stage.

For a complex app such as GPG, the result is somewhat different.
Most importantly, when any combination of up to three stage 1
heuristics are omitted, but all stage 3 ones are still deployed, the
three key-loading instructions still get ranked with the top priority
by stage 3. Depending on which stage 1 heuristics are omitted,
additional instructions also get ranked at that top priority. In other
words, omitting up to three stage 1 heuristics still results in perfect
recall, but with lower precision. All subkeys will still be extracted in
stage 4, albeit mixed with other values. Filtering out the irrelevant
values should not be too hard, however, if the encryption algorithm
is known. The attacker can then check which potential subkeys
form valid keys, and try those out on the data inputs.

We can thus conclude that the heuristics of stage 1 provide quite
some redundancy, especially for simpler programs.

3.2 Stage 3
Our ablation study shows that K-Hunt++ achieves a perfect recall
for any combination of two or more of the six stage 3 heuristics.
In other words, up to four of the six stage 3 heuristics can be
omitted and the approach will still rank the key-loading operations
with top priority (assuming all stage 1 heuristics were deployed).
The precision then goes down, however, as more heuristics being
omitted results in more additional instructions being ranked with
the same top priority as the key-loading instructions. Importantly,
full precision is maintained if only one stage 3 heuristic is omitted,
independent of which one is omitted, and for both use cases. Even
formost combinations of two heuristics being omitted, full precision
is obtained. For most combinations of three or four heuristics being
omitted, the precision drops significantly, but not dramatically: only
tens of additional instructions are ranked at the top priority, not
hundreds, which implies that the attacker will still be able to filter
out irrelevant subkeys reported by stage 4 with little effort.

It is clear that K-Hunt++ is much more robust than K-Hunt.

4 ROBUSTNESS WITH RESPECT TO
OBFUSCATION

This section presents an analysis of the robustness of K-Hunt++,
i.e., of its resilience against software protections that aim to break
its heuristics. We structured this analysis per milepost.

First, however, we want to discuss one general protection strat-
egy, namely where the defender injects additional code into the
program with features and behavior similar to those of the mile-
posts. The software could, e.g., be transformed to execute multiple
encryptions/decryptions/signatures on the input data, one with the
true keys and additional ones with fake keys. While such additive
attack strategies would result in more candidates for each milepost
being identified, the number of fake and true (sub)keys being col-
lected would in the end only increase linearly with the overhead
that such a defense introduces. Some additional effort would hence
be required by the attacker to sift out fake (sub)keys, but that effort
would be limited. In the remainder of this section, we will hence
neglect such additive protection strategies.

Checkmate ’24, October 18, 2024, Salt Lake City, UT, USA Thomas Faingnaert, Willem Van Iseghem, and Bjorn De Sutter

As for the use of dynamic analysis techniques, we refer to the
report of the 2019 Dagstuhl seminar on Software Protection De-
cision Support and Evaluation Methodologies, which states that
trace-based techniques have to be assumed possible given mod-
ern virtualization and instrumentation technologies, i.e., that they
cannot be prevented entirely with software protections [10].

Finally, we note that the redundancy of the heuristics as ob-
served in the ablation study does not imply that obfuscations that
target those heuristics can have no effect on the recall of K-Hunt++.
Omitting a heuristic as we did in the ablation study is equivalent to
giving all candidate blocks, instructions, or operands the same score
for the considered fingerprint. By contrast, obfuscations might be
able to make non-key-loading instructions receive higher scores
than key-loading ones, thus impacting both the precision and the
recall of K-Hunt++ more than omitting heuristics does.

Milepost 1: crypto basic blocks. Heuristic (b) on the scaling of
execution counts can obviously not be broken without severely
impacting the user experience. Heuristic (d) on the high randomness
of accessed data cannot be broken, as ciphertexts have high entropy
by construction. Heuristic (c) on coverage can easily be broken, as
it simply does not work in software in which the cryptographic
functionality is compulsory. Heuristic (a) can be broken by injecting
bogus crypto-like code into non-crypto functionality.

Milepost 2: key loading blocks. For expanding the set of basic
blocks in which to find key loading instructions, we rely on data
dependencies. One could try to thwart this with implicit data flow [3,
8, 28]. Such obfuscations introduce large overheads, however. Given
that different subkey values have to be loaded repeatedly (at least
on current architectures, with their current amounts of registers),
in the inner loops of the encryption routines, such obfuscation
will result in a huge slowdown. Alternatively, one can try to inject
longer dependency chains of computational instructions spread
over multiple basic blocks. That would introduce less overhead, but
it can also be mitigated by our approach, namely by expanding the
set of basic blocks identified in stage 2 iteratively. This will result in
more code being instrumented for milepost 3, and hence will slow
down the attack, but like the additive attacks mentioned above, we
conjecture this can only result in a limited number of false positive
results coming out of stages 3 and 4. Validating this is future work.

Milepost 3: key operands. For heuristic (e), at least three alterna-
tive analyses are available: fine-grained taint tracking like our up-
dated version of Yadegari’s technique, course-grained taint-tracking
like that of the original K-Hunt, and K-Hunt++’s approach based
on data dependency distances. While all of them can in theory be
broken with implicit data flow obfuscations, we do not consider
implicit data flow deployed on input data feasible: propagating all
input data such as large documents implicitly through a program
will simply be too slow to be acceptable for the user.

Alternatively, one can try to taint the key buffers in an idem-
potent manner, e.g., by XOR-ing the key data twice with data de-
rived from the inputs. This would be relatively straightforward. We
conjecture, however, that the distance-based approach will not be
thwarted by this easily: the path from the data reading system call
to the key will still be longer that the typically very short path to
the encrypting XOR. Validating this is future work.

Even without obfuscations being deployed, heuristic (f) might
not be applicable, as was already discussed for AES CBC mode,
which uses small buffers of constant size for keys and for data,
so data cannot be discriminated from keys based on the buffers’
size and variability thereof. As the determination of the buffers’
size and its variability is based on the addresses of the memory
locations that instructions access during the execution, making the
key buffers look larger and variable to make them similar to data
buffers requires making the key-loading instructions access more
memory locations and varying their amount based on input sizes.
While custom obfuscations might be able to achieve this, we are
not aware of any such obfuscations being described in literature.

With the exception of standardized constants that can be ob-
fuscated such that they are not loaded from buffers but computed,
heuristics (g)–(j) target rather fundamental properties that cannot
be worked around without altering the core semantics of crypto-
graphic standards. Heuristic (g) is broken when, e.g., salting is used,
as was the case in our GPG use case, but (h) then provides a fallback.
While this property might not hold for stream ciphers, we do think
it targets a fundamental property of block ciphers.

In summary, while there certainly exist options to break some
of the heuristics used in stage 3, they are far from straightforward.
Most importantly, as we observed in the ablation study, breaking
only one or two of them will typically not suffice. So we conjecture
that breaking stage 3 of K-Hunt++ will require costly obfuscations,
with a large, and potentially unacceptable, price on performance.

Milepost 4: key values. We used a debugger to extract the keys
being used in a run of the program. This is highly efficient, as the
use of a debugger introduces hardly any overhead in the program.
Anti-debugging techniques can be used to prevent the use of a
debugger. Anti-debugging checks that query the environment (e.g.,
via standard library APIs) for signs they are being debugged can
easily be defeated as debuggers can intercept those queries [23]. A
stronger form of anti-debugging is by means of self-debugging [1,
2, 12, 26]. While no successful attacks have been published on the
strongest forms thereof, such as the circular self-debugging by
Abrath et al. [1], those forms introduce quite some overhead, as
well as additional complexity in the software development life cycle.
Moreover, since the attacker aiming for milepost 4 already reached
the previous milepost with dynamic techniques based on traces,
they might just as well use similar dynamic analyses, implemented,
e.g., with Pintools, to extract the keys.

5 CONCLUSIONS
We presented the K-Hunt++ crypto key extraction approach, an
extension and improvement over K-Hunt. On two use cases we
showed how K-Hunt++ correctly handles cases that K-Hunt can
(likely) not handle. With an ablation study and a qualitative analy-
sis, we provided evidence for the robustness of K-Hunt++. All its
artifacts are available at https://github.com/csl-ugent/TREX.

ACKNOWLEDGMENTS
This research was partly funded by the Cybersecurity Research
Program Flanders. Thomas Faingnaert is supported with a PhD
Fellowship grant from the Research Foundation - Flanders (FWO)
Grant No. 11I1123N.

https://github.com/csl-ugent/TREX

K-Hunt++: Improved Dynamic Cryptographic Key Extraction (Short Paper) Checkmate ’24, October 18, 2024, Salt Lake City, UT, USA

REFERENCES
[1] Bert Abrath, Bart Coppens, Ilja Nevolin, and Bjorn De Sutter. 2020. Resilient

self-debugging software protection. In 2020 IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW). IEEE, 606–615.

[2] Bert Abrath, Bart Coppens, Stijn Volckaert, Joris Wijnant, and Bjorn De Sutter.
2016. Tightly-coupled self-debugging software protection. In Proceedings of the
6th Workshop on Software Security, Protection, and Reverse Engineering. 1–10.

[3] Golam Sarwar Babil, Olivier Mehani, Roksana Boreli, and Mohamed-Ali Kaafar.
2013. On the effectiveness of dynamic taint analysis for protecting against private
information leaks on android-based devices. In 2013 International Conference on
Security and Cryptography (SECRYPT). IEEE, 1–8.

[4] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator.. In USENIX
annual technical conference, FREENIX Track, Vol. 41. California, USA, 10–5555.

[5] Léonard Benedetti, Aurélien Thierry, and Julien Francq. 2017. Detection of
cryptographic algorithms with grap. Cryptology ePrint Archive 2017/1119 (2017).
https://eprint.iacr.org/2017/1119

[6] Juan Caballero, Pongsin Poosankam, Christian Kreibich, and Dawn Song. 2009.
Dispatcher: enabling active botnet infiltration using automatic protocol reverse-
engineering. In Proceedings of the 16th ACM Conference on Computer and Com-
munications Security (Chicago, Illinois, USA) (CCS ’09). Association for Comput-
ing Machinery, New York, NY, USA, 621–634. https://doi.org/10.1145/1653662.
1653737

[7] Joan Calvet, JoséM Fernandez, and Jean-YvesMarion. 2012. Aligot: Cryptographic
function identification in obfuscated binary programs. In Proceedings of the 2012
ACM conference on Computer and communications security. 169–182.

[8] Lorenzo Cavallaro, Prateek Saxena, and R Sekar. 2007. Anti-taint-analysis: Prac-
tical evasion techniques against information flow based malware defense. Secure
Systems Lab at Stony Brook University, Tech. Rep (2007), 1–18.

[9] B. R. Chandavarkar. 2020. Hardcoded Credentials and Insecure Data Transfer in
IoT: National and International Status. In 2020 11th International Conference on
Computing, Communication and Networking Technologies (ICCCNT). 1–7. https:
//doi.org/10.1109/ICCCNT49239.2020.9225520

[10] Bjorn De Sutter, Christian Collberg, Mila Dalla Preda, and Brecht Wyseur. 2019.
Software Protection Decision Support and Evaluation Methodologies (Dagstuhl
Seminar 19331). Dagstuhl Reports 9, 8 (2019), 1–25. https://doi.org/10.4230/
DagRep.9.8.1

[11] Antonio M Espinoza, Jeffrey Knockel, Pedro Comesaña-Alfaro, and Jedidiah R
Crandall. 2016. V-DIFT: Vector-based dynamic information flow tracking with
application to locating cryptographic keys for reverse engineering. In 2016 11th
International Conference on Availability, Reliability and Security (ARES). IEEE,
266–271.

[12] Peter Ferrie. 2008. Anti-Unpacker Tricks. In CARO.
[13] Hex-Rays. 2023. F.L.I.R.T: Fast Library Identification and Recognition Technology.

https://hex-rays.com/products/ida/tech/flirt.
[14] Diane Duros Hosfelt. [n. d.]. Automated detection and classification of crypto-

graphic algorithms in binary programs through machine learning. Master’s thesis.
Johns Hopkins University.

[15] Intel Corporation. 2023. Pin - A Dynamic Binary Instrumentation
Tool. https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-
dynamic-binary-instrumentation-tool.html.

[16] Burt Kaliski. 2000. PKCS# 5: Password-based cryptography specification version 2.0.
Technical Report.

[17] David Lazar, Haogang Chen, Xi Wang, and Nickolai Zeldovich. 2014. Why does
cryptographic software fail? a case study and open problems. In Proceedings of
5th Asia-Pacific Workshop on Systems (Beijing, China) (APSys ’14). Association
for Computing Machinery, New York, NY, USA, Article 7, 7 pages. https://doi.
org/10.1145/2637166.2637237

[18] Pierre Lestringant, Frédéric Guihéry, and Pierre-Alain Fouque. 2015. Automated
Identification of Cryptographic Primitives in Binary Code with Data Flow Graph
Isomorphism. In Proceedings of the 10th ACM Symposium on Information, Com-
puter and Communications Security (Singapore, Republic of Singapore) (ASIA
CCS ’15). Association for Computing Machinery, New York, NY, USA, 203–214.
https://doi.org/10.1145/2714576.2714639

[19] Juanru Li, Zhiqiang Lin, Juan Caballero, Yuanyuan Zhang, and Dawu Gu. 2018.
K-Hunt: Pinpointing Insecure Cryptographic Keys from Execution Traces. In
Proc. 2018 ACM SIGSAC Conference on Computer and Communications Security
(2018-10-15). 412–425. https://doi.org/10.1145/3243734.3243783

[20] Xin Li, Xinyuan Wang, and Wentao Chang. 2012. CipherXRay: Exposing crypto-
graphic operations and transient secrets from monitored binary execution. IEEE
transactions on dependable and secure computing 11, 2 (2012), 101–114.

[21] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. Acm
sigplan notices 40, 6 (2005), 190–200.

[22] Carlo Meijer, Veelasha Moonsamy, and Jos Wetzels. 2021. Where’s Crypto?:
Automated Identification and Classification of Proprietary Cryptographic Primi-
tives in Binary Code. In 30th USENIX Security Symposium (USENIX Security 21).

555–572.
[23] Henry Miller. 2005. Beginners Guide to Basic Linux Anti-Anti-Debugging Tech-

niques. CodeBreakers Journal (2005).
[24] Jasvir Nagra and Christian Collberg. 2009. Surreptitious Software: Obfuscation,

Watermarking, and Tamperproofing for Software Protection: Obfuscation, Water-
marking, and Tamperproofing for Software Protection. Pearson Education.

[25] Igor Pavlov. 2023. 7-Zip. https://www.7-zip.org.
[26] Pellsson. 2010. Starcraft 2 Anti-Debugging. https://tinyurl.com/tyxjkeb
[27] The GnuPG Project. 2023. The GNU Privacy Guard. https://gnupg.org.
[28] Jon Stephens, Babak Yadegari, Christian Collberg, Saumya Debray, and Carlos

Scheidegger. 2018. Probabilistic Obfuscation Through Covert Channels. In 2018
IEEE European Symposium on Security and Privacy. 243–257. https://doi.org/10.
1109/EuroSP.2018.00025

[29] Benjamin Taubmann, Omar Alabduljaleel, and Hans P Reiser. 2018. DroidKex:
Fast extraction of ephemeral TLS keys from the memory of Android apps. Digital
Investigation 26 (2018), S67–S76.

[30] The LLDB Team. 2023. The LLDB Debugger. https://lldb.llvm.org.
[31] Dongpeng Xu, Jiang Ming, and Dinghao Wu. 2017. Cryptographic function

detection in obfuscated binaries via bit-precise symbolic loop mapping. In 2017
IEEE Symposium on Security and Privacy (SP). IEEE, 921–937.

[32] Babak Yadegari and Saumya Debray. 2014. Bit-Level Taint Analysis. In 2014 IEEE
14th International Working Conference on Source Code Analysis and Manipulation
(Victoria, BC, Canada, 2014-09). IEEE, 255–264. https://doi.org/10.1109/SCAM.
2014.43

[33] Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya Debray. 2015. A
Generic Approach to Automatic Deobfuscation of Executable Code. In 2015 IEEE
Symposium on Security and Privacy. 674–691. https://doi.org/10.1109/SP.2015.47

A DETAILED RESULTS OF THE ABLATION
STUDY

Tables 1 and 2 report the qualitative results of our ablation study,
on the basis of which Section 3 presented qualitative observations.

Table 1: Detailed results for the ablation study of stage 1.
|out1 | and |out2 | are the amount of basic blocks that are out-
put by stage 1 and stage 2, respectively. rank3 lists the ranking
of the key-loading instructions after stage 3 when all heuris-
tics are used in that stage. 1–𝑋 indicates that along with the
key-loading instructions,𝑋 −16 (for 7-Zip) and𝑋 −3 (for GPG)
additional instructions are being ranked at that top priority.
1–16 (7-Zip) and 1–3 (GPG) indicate that the key-loading in-
structions got the top priority exclusively, resulting in full,
precise key extraction, i.e., perfect recall and precision. The
different parts of the table correspond to different amounts
of heuristics being omitted from stage 1, ranging from no
heuristics omitted in the top part, to three out of four heuris-
tics omitted in the bottom part.

7-Zip GPG
(a) (b) (c) (d) |out1 | |out2 | rank3 |out1 | |out2 | rank3
✓ ✓ ✓ ✓ 2 18 1–16 1 48 1–3
× ✓ ✓ ✓ 3 22 1–16 1 48 1–3
✓ × ✓ ✓ 2 18 1–16 1 48 1–3
✓ ✓ × ✓ 8 19 1–16 4 107 1–7
✓ ✓ ✓ × 6 45 1–16 1 48 1–3
× × ✓ ✓ 2 18 1–16 1 48 1–3
× ✓ × ✓ 8 23 1–16 4 107 1–7
× ✓ ✓ × 3 22 1–16 1 48 1–3
✓ × × ✓ 306 679 1–16 119 836 1–29
✓ × ✓ × 13 102 1–16 4 107 1–7
✓ ✓ × × 6 45 1–16 1 48 1–3
× × × ✓ 899 1205 1–16 211 1094 1–32
× × ✓ × 21 183 1–16 5 140 1–7
× ✓ × × 3344 5684 1–16 3889 5728 1–110
✓ × × × 3344 5684 1–16 3889 5728 1–110

https://eprint.iacr.org/2017/1119
https://doi.org/10.1145/1653662.1653737
https://doi.org/10.1145/1653662.1653737
https://doi.org/10.1109/ICCCNT49239.2020.9225520
https://doi.org/10.1109/ICCCNT49239.2020.9225520
https://doi.org/10.4230/DagRep.9.8.1
https://doi.org/10.4230/DagRep.9.8.1
https://hex-rays.com/products/ida/tech/flirt
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://doi.org/10.1145/2637166.2637237
https://doi.org/10.1145/2637166.2637237
https://doi.org/10.1145/2714576.2714639
https://doi.org/10.1145/3243734.3243783
https://www.7-zip.org
https://tinyurl.com/tyxjkeb
https://gnupg.org
https://doi.org/10.1109/EuroSP.2018.00025
https://doi.org/10.1109/EuroSP.2018.00025
https://lldb.llvm.org
https://doi.org/10.1109/SCAM.2014.43
https://doi.org/10.1109/SCAM.2014.43
https://doi.org/10.1109/SP.2015.47

Checkmate ’24, October 18, 2024, Salt Lake City, UT, USA Thomas Faingnaert, Willem Van Iseghem, and Bjorn De Sutter

Table 2: Detailed results for the ablation study of stage 3. The 1–𝑋 in rank3 has the same meaning as in Table 1. The different
parts of the table correspond to different amounts of heuristics being omitted from stage 3, ranging from no heuristics omitted
in the top part, to four out of six heuristics omitted in the bottom part.

7-Zip GPG
(e) (f) (g) (h) (i) (j) rank3 rank3
✓ ✓ ✓ ✓ ✓ ✓ 1–16 1–3
× ✓ ✓ ✓ ✓ ✓ 1–16 1–3
✓ × ✓ ✓ ✓ ✓ 1–16 1–3
✓ ✓ × ✓ ✓ ✓ 1–16 1–3
✓ ✓ ✓ × ✓ ✓ 1–16 1–3
✓ ✓ ✓ ✓ × ✓ 1–16 1–3
✓ ✓ ✓ ✓ ✓ × 1–16 1–3
× × ✓ ✓ ✓ ✓ 1–16 1–3
× ✓ × ✓ ✓ ✓ 1–16 1–3
× ✓ ✓ × ✓ ✓ 1–16 1–3
× ✓ ✓ ✓ × ✓ 1–16 1–3
× ✓ ✓ ✓ ✓ × 1–16 1–3
✓ × × ✓ ✓ ✓ 1–16 1–3
✓ × ✓ × ✓ ✓ 1–16 1–3
✓ × ✓ ✓ × ✓ 1–16 1–4
✓ × ✓ ✓ ✓ × 1–16 1–3
✓ ✓ × × ✓ ✓ 1–20 1–13
✓ ✓ × ✓ × ✓ 1–17 1–14
✓ ✓ × ✓ ✓ × 1–16 1–3
✓ ✓ ✓ × × ✓ 1–16 1–9
✓ ✓ ✓ × ✓ × 1–16 1–3
✓ ✓ ✓ ✓ × × 1–16 1–3
× × × ✓ ✓ ✓ 1–16 1–3
× × ✓ × ✓ ✓ 1–16 1–3
× × ✓ ✓ × ✓ 1–16 1–4
× × ✓ ✓ ✓ × 1–16 1–3
× ✓ × × ✓ ✓ 1–26 1–15
× ✓ × ✓ × ✓ 1–17 1–20
× ✓ × ✓ ✓ × 1–16 1–3
× ✓ ✓ × × ✓ 1–16 1–10
× ✓ ✓ × ✓ × 1–16 1–3
× ✓ ✓ ✓ × × 1–16 1–3
✓ × × × ✓ ✓ 1–20 1–27
✓ × × ✓ × ✓ 1–17 1–15
✓ × × ✓ ✓ × 1–16 1–3
✓ × ✓ × × ✓ 1–16 1–17
✓ × ✓ × ✓ × 1–16 1–8
✓ × ✓ ✓ × × 1–16 1–10
✓ ✓ × × × ✓ 1–23 1–56
✓ ✓ × × ✓ × 1–20 1–13
✓ ✓ × ✓ × × 1–20 1–14
✓ ✓ ✓ × × × 1–16 1–10
× × × × ✓ ✓ 1–29 1–36
× × × ✓ × ✓ 1–17 1–22
× × × ✓ ✓ × 1–16 1–3
× × ✓ × × ✓ 1–16 1–21
× × ✓ × ✓ × 1–16 1–8
× × ✓ ✓ × × 1–16 1–10
× ✓ × × × ✓ 1–34 1–68
× ✓ × × ✓ × 1–26 1–15
× ✓ × ✓ × × 1–20 1–20
× ✓ ✓ × × × 1–16 1–10
✓ × × × × ✓ 1–23 1–82
✓ × × × ✓ × 1–20 1–32
✓ × × ✓ × × 1–20 1–23
✓ × ✓ × × × 1–16 1–32
✓ ✓ × × × × 1–40 1–58

	Abstract
	1 Introduction
	2 K-Hunt++
	2.1 Design
	2.2 Evaluation
	2.3 Comparison with K-Hunt

	3 Ablation Study
	3.1 Stage 1
	3.2 Stage 3

	4 Robustness with Respect to Obfuscation
	5 Conclusions
	Acknowledgments
	References
	A Detailed results of the ablation study

