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State of the art in crypto localisation: K-Hunt
Goal: identify insecure cryptographic keys
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State of the art in crypto localisation: K-Hunt
Goal: identify insecure cryptographic keys
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Problems: 1. K-Hunt is not (fully) available

2. K-Hunt has problems with certain features and
block cipher modes (e.g. in 7-Zip and GPG)



K-Hunt++: An extension of K-Hunt’s pipeline
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K-Hunt++: An extension of K-Hunt’s pipeline
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K-Hunt++: An extension of K-Hunt’s pipeline
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K-Hunt++: An extension of K-Hunt’s pipeline
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Phase 1: Localise cryptographic basic blocks
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Sort basic blocks using information from traces:

a) Instruction mix: arithmetic, bitwise, ...

b) Execution countlinear scaling

c) Functionality coverage

d) Randomness of produced/consumed data



Phase 2: Key-loading basic blocks
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Extend the set of basic blocks from phase 1 using data dependencies



Phase 3: Key-loading instructions & operands
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Differentiate key-loading and data-loading instructions using:

e) Datasource: KDF/RNG vs. file/network (taint analysis)
f)  Buffer size: small, constant-size buffer

10



Improved Data Source heuristic in K-Hunt++
Example: GPG Data Dependency Graph

[ input passphrase
N
L memcpy()
N
input passphrase
SHA1
Y >\
MDC key
s S — ‘./

i| Read data Read key |

-------------------------------------




Improved Data Source heuristic in K-Hunt++
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Buffer size heuristic can be broken easily
Example: Cipher Block Chaining mode in 7-Zip
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Phase 3: K-Hunt++’s extra heuristics
K-Hunt++ has four additional heuristics in phase 3

. : Key-loading
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Differentiate key-loading and data-loading instructions using:

e) Datasource: KDF/RNG vs. file/network (taint analysis)

f)  Buffer size: small, constant-size buffer

g) Constant keys: over different runs of the program

h) Quasiconstant keys: in a single run of the program

i)  Likely key values: ignore addresses, known constants, ...
J)  Instruction types:ignore e.g. control flow
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Evaluation

Ablation study of Phase 1 and Phase 3

For all configurations: no false negatives
False positives increase as fewer heuristics are used

Easy to filter out false positives: O(10) false positives

Performance
47 minutes total for 7-Zip, 18 minutes for GPG
Run time dominated by tracing = similar performance to K-Hunt?

Robustness to obfuscation
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K-Hunt++ is an extension of K-Hunt
with improved robustness

e Source available

* Additionally extend BB set with data dependencies
Deals with GPG’s spread out loading and use of the key

* |Improved “Data source” heuristic in phase 3

using distances in shortcut DDG
Deals with GPG’s memcpy and modification codes

* More heuristics in phase 3 as fallback
Deals with 7-Zip’s CBC
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