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State of the art in crypto localisation: K-Hunt
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1. K-Hunt is not (fully) available
2. K-Hunt has problems with certain features and 

block cipher modes (e.g. in 7-Zip and GPG)
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K-Hunt++: An extension of K-Hunt’s pipeline
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K-Hunt++: An extension of K-Hunt’s pipeline
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Phase 1: Localise cryptographic basic blocks
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a) Instruction mix:  arithmetic, bitwise, …
b) Execution count linear scaling
c) Functionality coverage
d) Randomness of produced/consumed data

Sort basic blocks using information from traces:
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Phase 2: Key-loading basic blocks
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Extend the set of basic blocks from phase 1 using data dependencies
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Phase 3: Key-loading instructions & operands
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Differentiate key-loading and data-loading instructions using:
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e) Data source: KDF/RNG vs. file/network (taint analysis)
f) Buffer size: small, constant-size buffer



Improved Data Source heuristic in K-Hunt++
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Example: GPG Data Dependency Graph
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Improved Data Source heuristic in K-Hunt++
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Example: GPG Data Dependency Graph
input passphrase

Using K-Hunt’s function-level 
taint analysis

memcpy()

passphraseinput

Encrypt

output

Read data Read key
AES

SHA1

MDC key

Using K-Hunt++’s distance in the 
shortcut data dependency graph

Read key further than 
read data

Shortcut dependencies 
look through moves

input passphrase
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Buffer size heuristic can be broken easily
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Block cipher

Example: Cipher Block Chaining mode in 7-Zip

Ciphertexti-1

Key

+

Plaintexti-1

Block cipher

Ciphertexti

Key

+

Plaintexti

… …

Computed in small, 
constant-size buffer



Phase 3: K-Hunt++’s extra heuristics
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e) Data source: KDF/RNG vs. file/network (taint analysis)
f) Buffer size: small, constant-size buffer
g) Constant keys: over different runs of the program
h) Quasi constant keys: in a single run of the program
i) Likely key values: ignore addresses, known constants, …
j) Instruction types: ignore e.g. control flow
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Key-loading 
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Key-loading 
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operands *
Key values

K-Hunt++ has four additional heuristics in phase 3

Differentiate key-loading and data-loading instructions using:



Evaluation

Ablation study of Phase 1 and Phase 3
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Performance
47 minutes total for 7-Zip, 18 minutes for GPG
Run time dominated by tracing→ similar performance to K-Hunt?

For all configurations: no false negatives
False positives increase as fewer heuristics are used

Easy to filter out false positives: O(10) false positives

Robustness to obfuscation



K-Hunt++ is an extension of K-Hunt
with improved robustness
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• Improved “Data source” heuristic in phase 3 
using distances in shortcut DDG

Deals with GPG’s memcpy and modification codes

• Additionally extend BB set with data dependencies
Deals with GPG’s spread out loading and use of the key

• More heuristics in phase 3 as fallback
Deals with 7-Zip’s CBC

• Source available
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