GHENT
UNIVERSITY

K-Hunt++: Improved Dynamic
Cryptographic Key Extraction

Thomas Faingnaert, Willem Van Iseghem, Bjorn De Sutter

CheckMATE 2024
Salt Lake City, 18 October 2024

State of the art in crypto localisation: K-Hunt
Goal: identify insecure cryptographic keys

Program Cryptographic key Keys Insecure key Insecure
trace localisation identification keys

State of the art in crypto localisation: K-Hunt
Goal: identify insecure cryptographic keys

Program Cryptographic key Keys
trace localisation

a8)
: Key-loading
insetxr/u c?t?o rl1r; &
operands
N\ J
Problems: 1. K-Hunt is not (fully) available

2. K-Hunt has problems with certain features and
block cipher modes (e.g. in 7-Zip and GPG)

K-Hunt++: An extension of K-Hunt’s pipeline

Crypto basic Key-loading

instructions &

blocks
operands

Program 2: (e.g. GPG)

Program 1:

{ Load key

[Load key] v K-Hunt A K-Hunt

Perform crypto v
{ Perform crypto J

K-Hunt++: An extension of K-Hunt’s pipeline

Crypto basic Key-loading Key-loading

instructions &

blocks basic blocks
operands

Extend basic block set

using data Program 2: (e.g. GPG)
dependencies

Program 1:

{ Load key

Load key v K-Hunt A K-Hunt
Perform crypto v KeHunt++ v v K-Hunt++
{ Perform crypto J

K-Hunt++: An extension of K-Hunt’s pipeline

Crypto basic Key-loading
blocks basic blocks

Key-loading

instructions &
operands *

K-Hunt++: An extension of K-Hunt’s pipeline

Key-loading
instructions & Key values
operands *

Crypto basic Key-loading

blocks basic blocks

Use debugger to
print values of key

Phase 1: Localise cryptographic basic blocks

Key-loading
instructions &
operands *

Crypto basic Key-loading Key values

blocks basic blocks

Sort basic blocks using information from traces:

a) Instruction mix: arithmetic, bitwise, ...

b) Execution countlinear scaling

c) Functionality coverage

d) Randomness of produced/consumed data

Phase 2: Key-loading basic blocks

Key-loading
instructions &
operands *

Crypto basic Key-loading Key values

blocks basic blocks

Extend the set of basic blocks from phase 1 using data dependencies

Phase 3: Key-loading instructions & operands

Key-loading
instructions &
operands *

Crypto basic Key-loading Key values

blocks basic blocks

Differentiate key-loading and data-loading instructions using:

e) Datasource: KDF/RNG vs. file/network (taint analysis)
f) Buffer size: small, constant-size buffer

10

Improved Data Source heuristic in K-Hunt++
Example: GPG Data Dependency Graph

[input passphrase
N
L memcpy()
N
input passphrase
SHA1
Y >\
MDC key
s S — ‘./

i| Read data Read key |

Improved Data Source heuristic in K-Hunt++

P

:
AES

-

Examp

[input

passphrase

N

[memcpy(ﬁ

N

input

passphrase

SHA1

AES

output

k» Encrypt) E

Using K-Hunt’s function-level
taint analysis

le: GPG Data Dependency Graph

passphrase

memcpy(ﬁ I Shortcut dependencies
look through moves

:
input passphrase

SHA1

------------------------------------ e

{ \ 4
i FEE CRIE AR Sy Read key further than
i L* Encrypt 4) i read data

Using K-Hunt++’s distance in the

shortcut data dependency graph 12

Buffer size heuristic can be broken easily
Example: Cipher Block Chaining mode in 7-Zip

Plaintext Plaintext;

Key{ Block cipher J KeyA{ Block cipher J

! !

Ciphertext, Ciphertext;

Phase 3: K-Hunt++’s extra heuristics
K-Hunt++ has four additional heuristics in phase 3

. : Key-loading
Crypto basic Key-loading instructions & Key values

blocks basic blocks o
operands

Differentiate key-loading and data-loading instructions using:

e) Datasource: KDF/RNG vs. file/network (taint analysis)

f) Buffer size: small, constant-size buffer

g) Constant keys: over different runs of the program

h) Quasiconstant keys: in a single run of the program

i) Likely key values: ignore addresses, known constants, ...
J) Instruction types:ignore e.g. control flow

14

Evaluation

Ablation study of Phase 1 and Phase 3

For all configurations: no false negatives
False positives increase as fewer heuristics are used

Easy to filter out false positives: O(10) false positives

Performance
47 minutes total for 7-Zip, 18 minutes for GPG
Run time dominated by tracing = similar performance to K-Hunt?

Robustness to obfuscation

15

K-Hunt++ is an extension of K-Hunt
with improved robustness

e Source available

* Additionally extend BB set with data dependencies
Deals with GPG’s spread out loading and use of the key

* |Improved “Data source” heuristic in phase 3

using distances in shortcut DDG
Deals with GPG’s memcpy and modification codes

* More heuristics in phase 3 as fallback
Deals with 7-Zip’s CBC

16

GHENT
UNIVERSITY

K-Hunt++: Improved Dynamic
Cryptographic Key Extraction

Thomas Faingnaert, Willem Van Iseghem, Bjorn De Sutter

CheckMATE 2024
Salt Lake City, 18 October 2024

	Slide 1: K-Hunt++: Improved Dynamic Cryptographic Key Extraction
	Slide 2: State of the art in crypto localisation: K-Hunt
	Slide 3: State of the art in crypto localisation: K-Hunt
	Slide 4: K-Hunt++: An extension of K-Hunt’s pipeline
	Slide 5: K-Hunt++: An extension of K-Hunt’s pipeline
	Slide 6: K-Hunt++: An extension of K-Hunt’s pipeline
	Slide 7: K-Hunt++: An extension of K-Hunt’s pipeline
	Slide 8: Phase 1: Localise cryptographic basic blocks
	Slide 9: Phase 2: Key-loading basic blocks
	Slide 10: Phase 3: Key-loading instructions & operands
	Slide 11: Improved Data Source heuristic in K-Hunt++
	Slide 12: Improved Data Source heuristic in K-Hunt++
	Slide 13: Buffer size heuristic can be broken easily
	Slide 14: Phase 3: K-Hunt++’s extra heuristics
	Slide 15: Evaluation
	Slide 16: K-Hunt++ is an extension of K-Hunt with improved robustness
	Slide 17: K-Hunt++: Improved Dynamic Cryptographic Key Extraction

