
K-Hunt++: Improved Dynamic
Cryptographic Key Extraction

Thomas Faingnaert, Willem Van Iseghem, Bjorn De Sutter

CheckMATE 2024
Salt Lake City, 18 October 2024

1

State of the art in crypto localisation: K-Hunt

2

Goal: identify insecure cryptographic keys
Program

trace
Insecure key
identification

Insecure
keys

Cryptographic key
localisation

Keys

State of the art in crypto localisation: K-Hunt

3

Goal: identify insecure cryptographic keys

Cryptographic key
localisation

Program
trace

Crypto basic
blocks

Key-loading
instructions &

operands

1. K-Hunt is not (fully) available
2. K-Hunt has problems with certain features and

block cipher modes (e.g. in 7-Zip and GPG)

Problems:

Insecure key
identification

Keys Insecure
keys

K-Hunt++: An extension of K-Hunt’s pipeline

4

Crypto basic
blocks

Key-loading
instructions &

operands

Load key
Perform crypto

Program 1:

 K-Hunt

Program 2: (e.g. GPG)

 K-Hunt

Load key

Perform crypto

K-Hunt++: An extension of K-Hunt’s pipeline

5

Crypto basic
blocks

Key-loading
basic blocks

Key-loading
instructions &

operands

Load key
Perform crypto

Program 1:

 K-Hunt

Program 2: (e.g. GPG)

 K-Hunt

Load key

Perform crypto

Extend basic block set
using data
dependencies

 K-Hunt++ K-Hunt++

K-Hunt++: An extension of K-Hunt’s pipeline

6

Crypto basic
blocks

Key-loading
basic blocks

Key-loading
instructions &

operands *

K-Hunt++: An extension of K-Hunt’s pipeline

7

Crypto basic
blocks

Key-loading
basic blocks

Key-loading
instructions &

operands *
Key values

Use debugger to
print values of key

Phase 1: Localise cryptographic basic blocks

8

a) Instruction mix: arithmetic, bitwise, …
b) Execution count linear scaling
c) Functionality coverage
d) Randomness of produced/consumed data

Sort basic blocks using information from traces:

Crypto basic
blocks

Key-loading
basic blocks

Key-loading
instructions &

operands *
Key values

Phase 2: Key-loading basic blocks

9

Extend the set of basic blocks from phase 1 using data dependencies

Crypto basic
blocks

Key-loading
basic blocks

Key-loading
instructions &

operands *
Key values

Phase 3: Key-loading instructions & operands

10

Differentiate key-loading and data-loading instructions using:

Crypto basic
blocks

Key-loading
basic blocks

Key-loading
instructions &

operands *
Key values

e) Data source: KDF/RNG vs. file/network (taint analysis)
f) Buffer size: small, constant-size buffer

Improved Data Source heuristic in K-Hunt++

11

Example: GPG Data Dependency Graph
input passphrase

memcpy()

passphraseinput

Encrypt

output

Read data Read key
AES

SHA1

MDC key

Improved Data Source heuristic in K-Hunt++

12

Example: GPG Data Dependency Graph
input passphrase

Using K-Hunt’s function-level
taint analysis

memcpy()

passphraseinput

Encrypt

output

Read data Read key
AES

SHA1

MDC key

Using K-Hunt++’s distance in the
shortcut data dependency graph

Read key further than
read data

Shortcut dependencies
look through moves

input passphrase

memcpy()

Encrypt

passphraseinput

output

SHA1

MDC key

Read data Read key
AES

Buffer size heuristic can be broken easily

13

Block cipher

Example: Cipher Block Chaining mode in 7-Zip

Ciphertexti-1

Key

+

Plaintexti-1

Block cipher

Ciphertexti

Key

+

Plaintexti

… …

Computed in small,
constant-size buffer

Phase 3: K-Hunt++’s extra heuristics

14

e) Data source: KDF/RNG vs. file/network (taint analysis)
f) Buffer size: small, constant-size buffer
g) Constant keys: over different runs of the program
h) Quasi constant keys: in a single run of the program
i) Likely key values: ignore addresses, known constants, …
j) Instruction types: ignore e.g. control flow

Crypto basic
blocks

Key-loading
basic blocks

Key-loading
instructions &

operands *
Key values

K-Hunt++ has four additional heuristics in phase 3

Differentiate key-loading and data-loading instructions using:

Evaluation

Ablation study of Phase 1 and Phase 3

15

Performance
47 minutes total for 7-Zip, 18 minutes for GPG
Run time dominated by tracing→ similar performance to K-Hunt?

For all configurations: no false negatives
False positives increase as fewer heuristics are used

Easy to filter out false positives: O(10) false positives

Robustness to obfuscation

K-Hunt++ is an extension of K-Hunt
with improved robustness

16

• Improved “Data source” heuristic in phase 3
using distances in shortcut DDG

Deals with GPG’s memcpy and modification codes

• Additionally extend BB set with data dependencies
Deals with GPG’s spread out loading and use of the key

• More heuristics in phase 3 as fallback
Deals with 7-Zip’s CBC

• Source available

K-Hunt++: Improved Dynamic
Cryptographic Key Extraction

Thomas Faingnaert, Willem Van Iseghem, Bjorn De Sutter

CheckMATE 2024
Salt Lake City, 18 October 2024

17

	Slide 1: K-Hunt++: Improved Dynamic Cryptographic Key Extraction
	Slide 2: State of the art in crypto localisation: K-Hunt
	Slide 3: State of the art in crypto localisation: K-Hunt
	Slide 4: K-Hunt++: An extension of K-Hunt’s pipeline
	Slide 5: K-Hunt++: An extension of K-Hunt’s pipeline
	Slide 6: K-Hunt++: An extension of K-Hunt’s pipeline
	Slide 7: K-Hunt++: An extension of K-Hunt’s pipeline
	Slide 8: Phase 1: Localise cryptographic basic blocks
	Slide 9: Phase 2: Key-loading basic blocks
	Slide 10: Phase 3: Key-loading instructions & operands
	Slide 11: Improved Data Source heuristic in K-Hunt++
	Slide 12: Improved Data Source heuristic in K-Hunt++
	Slide 13: Buffer size heuristic can be broken easily
	Slide 14: Phase 3: K-Hunt++’s extra heuristics
	Slide 15: Evaluation
	Slide 16: K-Hunt++ is an extension of K-Hunt with improved robustness
	Slide 17: K-Hunt++: Improved Dynamic Cryptographic Key Extraction

